ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  declt Unicode version

Theorem declt 9442
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
declt.a  |-  A  e. 
NN0
declt.b  |-  B  e. 
NN0
declt.c  |-  C  e.  NN
declt.l  |-  B  < 
C
Assertion
Ref Expression
declt  |- ; A B  < ; A C

Proof of Theorem declt
StepHypRef Expression
1 10nn 9430 . . 3  |- ; 1 0  e.  NN
2 declt.a . . 3  |-  A  e. 
NN0
3 declt.b . . 3  |-  B  e. 
NN0
4 declt.c . . 3  |-  C  e.  NN
5 declt.l . . 3  |-  B  < 
C
61, 2, 3, 4, 5numlt 9439 . 2  |-  ( (; 1
0  x.  A )  +  B )  < 
( (; 1 0  x.  A
)  +  C )
7 dfdec10 9418 . 2  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
8 dfdec10 9418 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
96, 7, 83brtr4i 4048 1  |- ; A B  < ; A C
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023   NNcn 8950   NN0cn0 9207  ;cdc 9415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-sub 8161  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-dec 9416
This theorem is referenced by:  slotsdifdsndx  12735  slotsdifunifndx  12742
  Copyright terms: Public domain W3C validator