ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzennn Unicode version

Theorem frecfzennn 10593
Description: The cardinality of a finite set of sequential integers. (See frec2uz0d 10566 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
frecfzennn  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )

Proof of Theorem frecfzennn
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5965 . . 3  |-  ( n  =  0  ->  (
1 ... n )  =  ( 1 ... 0
) )
2 fveq2 5589 . . 3  |-  ( n  =  0  ->  ( `' G `  n )  =  ( `' G `  0 ) )
31, 2breq12d 4064 . 2  |-  ( n  =  0  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... 0 ) 
~~  ( `' G `  0 ) ) )
4 oveq2 5965 . . 3  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
5 fveq2 5589 . . 3  |-  ( n  =  m  ->  ( `' G `  n )  =  ( `' G `  m ) )
64, 5breq12d 4064 . 2  |-  ( n  =  m  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... m ) 
~~  ( `' G `  m ) ) )
7 oveq2 5965 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
1 ... n )  =  ( 1 ... (
m  +  1 ) ) )
8 fveq2 5589 . . 3  |-  ( n  =  ( m  + 
1 )  ->  ( `' G `  n )  =  ( `' G `  ( m  +  1 ) ) )
97, 8breq12d 4064 . 2  |-  ( n  =  ( m  + 
1 )  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... ( m  +  1 ) ) 
~~  ( `' G `  ( m  +  1 ) ) ) )
10 oveq2 5965 . . 3  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
11 fveq2 5589 . . 3  |-  ( n  =  N  ->  ( `' G `  n )  =  ( `' G `  N ) )
1210, 11breq12d 4064 . 2  |-  ( n  =  N  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... N ) 
~~  ( `' G `  N ) ) )
13 0ex 4179 . . . 4  |-  (/)  e.  _V
1413enref 6869 . . 3  |-  (/)  ~~  (/)
15 fz10 10188 . . 3  |-  ( 1 ... 0 )  =  (/)
16 0zd 9404 . . . . . . 7  |-  ( T. 
->  0  e.  ZZ )
17 frecfzennn.1 . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10573 . . . . . 6  |-  ( T. 
->  G : om -1-1-onto-> ( ZZ>= `  0 )
)
1918mptru 1382 . . . . 5  |-  G : om
-1-1-onto-> ( ZZ>= `  0 )
20 peano1 4650 . . . . 5  |-  (/)  e.  om
2119, 20pm3.2i 272 . . . 4  |-  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )
2216, 17frec2uz0d 10566 . . . . 5  |-  ( T. 
->  ( G `  (/) )  =  0 )
2322mptru 1382 . . . 4  |-  ( G `
 (/) )  =  0
24 f1ocnvfv 5861 . . . 4  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )  ->  ( ( G `  (/) )  =  0  -> 
( `' G ` 
0 )  =  (/) ) )
2521, 23, 24mp2 16 . . 3  |-  ( `' G `  0 )  =  (/)
2614, 15, 253brtr4i 4081 . 2  |-  ( 1 ... 0 )  ~~  ( `' G `  0 )
27 simpr 110 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... m )  ~~  ( `' G `  m ) )
28 peano2nn0 9355 . . . . . . 7  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
29 zex 9401 . . . . . . . . . . . . . . 15  |-  ZZ  e.  _V
3029mptex 5823 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
31 vex 2776 . . . . . . . . . . . . . 14  |-  z  e. 
_V
3230, 31fvex 5609 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
3332ax-gen 1473 . . . . . . . . . . . 12  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
34 0z 9403 . . . . . . . . . . . 12  |-  0  e.  ZZ
35 frecfnom 6500 . . . . . . . . . . . 12  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  0  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3633, 34, 35mp2an 426 . . . . . . . . . . 11  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om
3717fneq1i 5377 . . . . . . . . . . 11  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3836, 37mpbir 146 . . . . . . . . . 10  |-  G  Fn  om
39 omex 4649 . . . . . . . . . 10  |-  om  e.  _V
40 fnex 5819 . . . . . . . . . 10  |-  ( ( G  Fn  om  /\  om  e.  _V )  ->  G  e.  _V )
4138, 39, 40mp2an 426 . . . . . . . . 9  |-  G  e. 
_V
4241cnvex 5230 . . . . . . . 8  |-  `' G  e.  _V
43 vex 2776 . . . . . . . 8  |-  m  e. 
_V
4442, 43fvex 5609 . . . . . . 7  |-  ( `' G `  m )  e.  _V
45 en2sn 6919 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( `' G `  m )  e.  _V )  ->  { ( m  + 
1 ) }  ~~  { ( `' G `  m ) } )
4628, 44, 45sylancl 413 . . . . . 6  |-  ( m  e.  NN0  ->  { ( m  +  1 ) }  ~~  { ( `' G `  m ) } )
4746adantr 276 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  { (
m  +  1 ) }  ~~  { ( `' G `  m ) } )
48 fzp1disj 10222 . . . . . 6  |-  ( ( 1 ... m )  i^i  { ( m  +  1 ) } )  =  (/)
4948a1i 9 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  i^i 
{ ( m  + 
1 ) } )  =  (/) )
50 f1ocnvdm 5863 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( `' G `  m )  e.  om )
5119, 50mpan 424 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  0
)  ->  ( `' G `  m )  e.  om )
52 nn0uz 9703 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5351, 52eleq2s 2301 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( `' G `  m )  e.  om )
54 nnord 4668 . . . . . . . 8  |-  ( ( `' G `  m )  e.  om  ->  Ord  ( `' G `  m ) )
55 ordirr 4598 . . . . . . . 8  |-  ( Ord  ( `' G `  m )  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5653, 54, 553syl 17 . . . . . . 7  |-  ( m  e.  NN0  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5756adantr 276 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
58 disjsn 3700 . . . . . 6  |-  ( ( ( `' G `  m )  i^i  {
( `' G `  m ) } )  =  (/)  <->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5957, 58sylibr 134 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) )
60 unen 6922 . . . . 5  |-  ( ( ( ( 1 ... m )  ~~  ( `' G `  m )  /\  { ( m  +  1 ) } 
~~  { ( `' G `  m ) } )  /\  (
( ( 1 ... m )  i^i  {
( m  +  1 ) } )  =  (/)  /\  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) ) )  ->  (
( 1 ... m
)  u.  { ( m  +  1 ) } )  ~~  (
( `' G `  m )  u.  {
( `' G `  m ) } ) )
6127, 47, 49, 59, 60syl22anc 1251 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  u. 
{ ( m  + 
1 ) } ) 
~~  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
62 1z 9418 . . . . . 6  |-  1  e.  ZZ
63 1m1e0 9125 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
6463fveq2i 5592 . . . . . . . . 9  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
6552, 64eqtr4i 2230 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
6665eleq2i 2273 . . . . . . 7  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  ( 1  -  1 ) ) )
6766biimpi 120 . . . . . 6  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )
68 fzsuc2 10221 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... (
m  +  1 ) )  =  ( ( 1 ... m )  u.  { ( m  +  1 ) } ) )
6962, 67, 68sylancr 414 . . . . 5  |-  ( m  e.  NN0  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
7069adantr 276 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
71 peano2 4651 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  suc  ( `' G `  m )  e.  om )
7253, 71syl 14 . . . . . . . 8  |-  ( m  e.  NN0  ->  suc  ( `' G `  m )  e.  om )
7372, 19jctil 312 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om ) )
74 0zd 9404 . . . . . . . . . 10  |-  ( ( `' G `  m )  e.  om  ->  0  e.  ZZ )
75 id 19 . . . . . . . . . 10  |-  ( ( `' G `  m )  e.  om  ->  ( `' G `  m )  e.  om )
7674, 17, 75frec2uzsucd 10568 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  ( G `  suc  ( `' G `  m ) )  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
7753, 76syl 14 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
7852eleq2i 2273 . . . . . . . . . . 11  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  0 ) )
7978biimpi 120 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  0 )
)
80 f1ocnvfv2 5860 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( G `  ( `' G `  m ) )  =  m )
8119, 79, 80sylancr 414 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( G `
 ( `' G `  m ) )  =  m )
8281oveq1d 5972 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( G `  ( `' G `  m ) )  +  1 )  =  ( m  + 
1 ) )
8377, 82eqtrd 2239 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 ) )
84 f1ocnvfv 5861 . . . . . . 7  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om )  ->  ( ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 )  -> 
( `' G `  ( m  +  1
) )  =  suc  ( `' G `  m ) ) )
8573, 83, 84sylc 62 . . . . . 6  |-  ( m  e.  NN0  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
8685adantr 276 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
87 df-suc 4426 . . . . 5  |-  suc  ( `' G `  m )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } )
8886, 87eqtrdi 2255 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
8961, 70, 883brtr4d 4083 . . 3  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) )
9089ex 115 . 2  |-  ( m  e.  NN0  ->  ( ( 1 ... m ) 
~~  ( `' G `  m )  ->  (
1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) ) )
913, 6, 9, 12, 26, 90nn0ind 9507 1  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   T. wtru 1374    e. wcel 2177   _Vcvv 2773    u. cun 3168    i^i cin 3169   (/)c0 3464   {csn 3638   class class class wbr 4051    |-> cmpt 4113   Ord word 4417   suc csuc 4420   omcom 4646   `'ccnv 4682    Fn wfn 5275   -1-1-onto->wf1o 5279   ` cfv 5280  (class class class)co 5957  freccfrec 6489    ~~ cen 6838   0cc0 7945   1c1 7946    + caddc 7948    - cmin 8263   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668   ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by:  frecfzen2  10594  hashfz1  10950
  Copyright terms: Public domain W3C validator