ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzennn Unicode version

Theorem frecfzennn 10535
Description: The cardinality of a finite set of sequential integers. (See frec2uz0d 10508 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
frecfzennn  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )

Proof of Theorem frecfzennn
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . 3  |-  ( n  =  0  ->  (
1 ... n )  =  ( 1 ... 0
) )
2 fveq2 5561 . . 3  |-  ( n  =  0  ->  ( `' G `  n )  =  ( `' G `  0 ) )
31, 2breq12d 4047 . 2  |-  ( n  =  0  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... 0 ) 
~~  ( `' G `  0 ) ) )
4 oveq2 5933 . . 3  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
5 fveq2 5561 . . 3  |-  ( n  =  m  ->  ( `' G `  n )  =  ( `' G `  m ) )
64, 5breq12d 4047 . 2  |-  ( n  =  m  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... m ) 
~~  ( `' G `  m ) ) )
7 oveq2 5933 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
1 ... n )  =  ( 1 ... (
m  +  1 ) ) )
8 fveq2 5561 . . 3  |-  ( n  =  ( m  + 
1 )  ->  ( `' G `  n )  =  ( `' G `  ( m  +  1 ) ) )
97, 8breq12d 4047 . 2  |-  ( n  =  ( m  + 
1 )  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... ( m  +  1 ) ) 
~~  ( `' G `  ( m  +  1 ) ) ) )
10 oveq2 5933 . . 3  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
11 fveq2 5561 . . 3  |-  ( n  =  N  ->  ( `' G `  n )  =  ( `' G `  N ) )
1210, 11breq12d 4047 . 2  |-  ( n  =  N  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... N ) 
~~  ( `' G `  N ) ) )
13 0ex 4161 . . . 4  |-  (/)  e.  _V
1413enref 6833 . . 3  |-  (/)  ~~  (/)
15 fz10 10138 . . 3  |-  ( 1 ... 0 )  =  (/)
16 0zd 9355 . . . . . . 7  |-  ( T. 
->  0  e.  ZZ )
17 frecfzennn.1 . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1816, 17frec2uzf1od 10515 . . . . . 6  |-  ( T. 
->  G : om -1-1-onto-> ( ZZ>= `  0 )
)
1918mptru 1373 . . . . 5  |-  G : om
-1-1-onto-> ( ZZ>= `  0 )
20 peano1 4631 . . . . 5  |-  (/)  e.  om
2119, 20pm3.2i 272 . . . 4  |-  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )
2216, 17frec2uz0d 10508 . . . . 5  |-  ( T. 
->  ( G `  (/) )  =  0 )
2322mptru 1373 . . . 4  |-  ( G `
 (/) )  =  0
24 f1ocnvfv 5829 . . . 4  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )  ->  ( ( G `  (/) )  =  0  -> 
( `' G ` 
0 )  =  (/) ) )
2521, 23, 24mp2 16 . . 3  |-  ( `' G `  0 )  =  (/)
2614, 15, 253brtr4i 4064 . 2  |-  ( 1 ... 0 )  ~~  ( `' G `  0 )
27 simpr 110 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... m )  ~~  ( `' G `  m ) )
28 peano2nn0 9306 . . . . . . 7  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
29 zex 9352 . . . . . . . . . . . . . . 15  |-  ZZ  e.  _V
3029mptex 5791 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
31 vex 2766 . . . . . . . . . . . . . 14  |-  z  e. 
_V
3230, 31fvex 5581 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
3332ax-gen 1463 . . . . . . . . . . . 12  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
34 0z 9354 . . . . . . . . . . . 12  |-  0  e.  ZZ
35 frecfnom 6468 . . . . . . . . . . . 12  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  0  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3633, 34, 35mp2an 426 . . . . . . . . . . 11  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om
3717fneq1i 5353 . . . . . . . . . . 11  |-  ( G  Fn  om  <-> frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3836, 37mpbir 146 . . . . . . . . . 10  |-  G  Fn  om
39 omex 4630 . . . . . . . . . 10  |-  om  e.  _V
40 fnex 5787 . . . . . . . . . 10  |-  ( ( G  Fn  om  /\  om  e.  _V )  ->  G  e.  _V )
4138, 39, 40mp2an 426 . . . . . . . . 9  |-  G  e. 
_V
4241cnvex 5209 . . . . . . . 8  |-  `' G  e.  _V
43 vex 2766 . . . . . . . 8  |-  m  e. 
_V
4442, 43fvex 5581 . . . . . . 7  |-  ( `' G `  m )  e.  _V
45 en2sn 6881 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( `' G `  m )  e.  _V )  ->  { ( m  + 
1 ) }  ~~  { ( `' G `  m ) } )
4628, 44, 45sylancl 413 . . . . . 6  |-  ( m  e.  NN0  ->  { ( m  +  1 ) }  ~~  { ( `' G `  m ) } )
4746adantr 276 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  { (
m  +  1 ) }  ~~  { ( `' G `  m ) } )
48 fzp1disj 10172 . . . . . 6  |-  ( ( 1 ... m )  i^i  { ( m  +  1 ) } )  =  (/)
4948a1i 9 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  i^i 
{ ( m  + 
1 ) } )  =  (/) )
50 f1ocnvdm 5831 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( `' G `  m )  e.  om )
5119, 50mpan 424 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  0
)  ->  ( `' G `  m )  e.  om )
52 nn0uz 9653 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5351, 52eleq2s 2291 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( `' G `  m )  e.  om )
54 nnord 4649 . . . . . . . 8  |-  ( ( `' G `  m )  e.  om  ->  Ord  ( `' G `  m ) )
55 ordirr 4579 . . . . . . . 8  |-  ( Ord  ( `' G `  m )  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5653, 54, 553syl 17 . . . . . . 7  |-  ( m  e.  NN0  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5756adantr 276 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
58 disjsn 3685 . . . . . 6  |-  ( ( ( `' G `  m )  i^i  {
( `' G `  m ) } )  =  (/)  <->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
5957, 58sylibr 134 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) )
60 unen 6884 . . . . 5  |-  ( ( ( ( 1 ... m )  ~~  ( `' G `  m )  /\  { ( m  +  1 ) } 
~~  { ( `' G `  m ) } )  /\  (
( ( 1 ... m )  i^i  {
( m  +  1 ) } )  =  (/)  /\  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) ) )  ->  (
( 1 ... m
)  u.  { ( m  +  1 ) } )  ~~  (
( `' G `  m )  u.  {
( `' G `  m ) } ) )
6127, 47, 49, 59, 60syl22anc 1250 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  u. 
{ ( m  + 
1 ) } ) 
~~  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
62 1z 9369 . . . . . 6  |-  1  e.  ZZ
63 1m1e0 9076 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
6463fveq2i 5564 . . . . . . . . 9  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
6552, 64eqtr4i 2220 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
6665eleq2i 2263 . . . . . . 7  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  ( 1  -  1 ) ) )
6766biimpi 120 . . . . . 6  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )
68 fzsuc2 10171 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... (
m  +  1 ) )  =  ( ( 1 ... m )  u.  { ( m  +  1 ) } ) )
6962, 67, 68sylancr 414 . . . . 5  |-  ( m  e.  NN0  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
7069adantr 276 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
71 peano2 4632 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  suc  ( `' G `  m )  e.  om )
7253, 71syl 14 . . . . . . . 8  |-  ( m  e.  NN0  ->  suc  ( `' G `  m )  e.  om )
7372, 19jctil 312 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om ) )
74 0zd 9355 . . . . . . . . . 10  |-  ( ( `' G `  m )  e.  om  ->  0  e.  ZZ )
75 id 19 . . . . . . . . . 10  |-  ( ( `' G `  m )  e.  om  ->  ( `' G `  m )  e.  om )
7674, 17, 75frec2uzsucd 10510 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  ( G `  suc  ( `' G `  m ) )  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
7753, 76syl 14 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
7852eleq2i 2263 . . . . . . . . . . 11  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  0 ) )
7978biimpi 120 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  0 )
)
80 f1ocnvfv2 5828 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( G `  ( `' G `  m ) )  =  m )
8119, 79, 80sylancr 414 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( G `
 ( `' G `  m ) )  =  m )
8281oveq1d 5940 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( G `  ( `' G `  m ) )  +  1 )  =  ( m  + 
1 ) )
8377, 82eqtrd 2229 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 ) )
84 f1ocnvfv 5829 . . . . . . 7  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om )  ->  ( ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 )  -> 
( `' G `  ( m  +  1
) )  =  suc  ( `' G `  m ) ) )
8573, 83, 84sylc 62 . . . . . 6  |-  ( m  e.  NN0  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
8685adantr 276 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
87 df-suc 4407 . . . . 5  |-  suc  ( `' G `  m )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } )
8886, 87eqtrdi 2245 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
8961, 70, 883brtr4d 4066 . . 3  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) )
9089ex 115 . 2  |-  ( m  e.  NN0  ->  ( ( 1 ... m ) 
~~  ( `' G `  m )  ->  (
1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) ) )
913, 6, 9, 12, 26, 90nn0ind 9457 1  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   T. wtru 1365    e. wcel 2167   _Vcvv 2763    u. cun 3155    i^i cin 3156   (/)c0 3451   {csn 3623   class class class wbr 4034    |-> cmpt 4095   Ord word 4398   suc csuc 4401   omcom 4627   `'ccnv 4663    Fn wfn 5254   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925  freccfrec 6457    ~~ cen 6806   0cc0 7896   1c1 7897    + caddc 7899    - cmin 8214   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  frecfzen2  10536  hashfz1  10892
  Copyright terms: Public domain W3C validator