ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri Unicode version

Theorem breqtrri 4086
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1  |-  A R B
breqtrr.2  |-  C  =  B
Assertion
Ref Expression
breqtrri  |-  A R C

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2  |-  A R B
2 breqtrr.2 . . 3  |-  C  =  B
32eqcomi 2211 . 2  |-  B  =  C
41, 3breqtri 4084 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  3brtr4i  4089  ensn1  6911  pw1dom2  7373  0lt1sr  7913  0le2  9161  2pos  9162  3pos  9165  4pos  9168  5pos  9171  6pos  9172  7pos  9173  8pos  9174  9pos  9175  1lt2  9241  2lt3  9242  3lt4  9244  4lt5  9247  5lt6  9251  6lt7  9256  7lt8  9262  8lt9  9269  nn0le2xi  9380  numltc  9564  declti  9576  sqge0i  10808  faclbnd2  10924  ege2le3  12097  cos2bnd  12186  3dvdsdec  12291  n2dvdsm1  12339  n2dvds3  12341  pockthi  12796  dec2dvds  12849  dveflem  15313  tangtx  15425  lgsdir2lem2  15621  ex-fl  15861
  Copyright terms: Public domain W3C validator