| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 |
|
| breqtrr.2 |
|
| Ref | Expression |
|---|---|
| breqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 |
. 2
| |
| 2 | breqtrr.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | breqtri 4059 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: 3brtr4i 4064 ensn1 6864 pw1dom2 7310 0lt1sr 7849 0le2 9097 2pos 9098 3pos 9101 4pos 9104 5pos 9107 6pos 9108 7pos 9109 8pos 9110 9pos 9111 1lt2 9177 2lt3 9178 3lt4 9180 4lt5 9183 5lt6 9187 6lt7 9192 7lt8 9198 8lt9 9205 nn0le2xi 9316 numltc 9499 declti 9511 sqge0i 10735 faclbnd2 10851 ege2le3 11853 cos2bnd 11942 3dvdsdec 12047 n2dvdsm1 12095 n2dvds3 12097 pockthi 12552 dec2dvds 12605 dveflem 15046 tangtx 15158 lgsdir2lem2 15354 ex-fl 15455 |
| Copyright terms: Public domain | W3C validator |