ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri Unicode version

Theorem breqtrri 4060
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1  |-  A R B
breqtrr.2  |-  C  =  B
Assertion
Ref Expression
breqtrri  |-  A R C

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2  |-  A R B
2 breqtrr.2 . . 3  |-  C  =  B
32eqcomi 2200 . 2  |-  B  =  C
41, 3breqtri 4058 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  3brtr4i  4063  ensn1  6855  pw1dom2  7294  0lt1sr  7832  0le2  9080  2pos  9081  3pos  9084  4pos  9087  5pos  9090  6pos  9091  7pos  9092  8pos  9093  9pos  9094  1lt2  9160  2lt3  9161  3lt4  9163  4lt5  9166  5lt6  9170  6lt7  9175  7lt8  9181  8lt9  9188  nn0le2xi  9299  numltc  9482  declti  9494  sqge0i  10718  faclbnd2  10834  ege2le3  11836  cos2bnd  11925  3dvdsdec  12030  n2dvdsm1  12078  n2dvds3  12080  pockthi  12527  dec2dvds  12580  dveflem  14962  tangtx  15074  lgsdir2lem2  15270  ex-fl  15371
  Copyright terms: Public domain W3C validator