| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 |
|
| breqtrr.2 |
|
| Ref | Expression |
|---|---|
| breqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 |
. 2
| |
| 2 | breqtrr.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | breqtri 4059 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: 3brtr4i 4064 ensn1 6864 pw1dom2 7312 0lt1sr 7851 0le2 9099 2pos 9100 3pos 9103 4pos 9106 5pos 9109 6pos 9110 7pos 9111 8pos 9112 9pos 9113 1lt2 9179 2lt3 9180 3lt4 9182 4lt5 9185 5lt6 9189 6lt7 9194 7lt8 9200 8lt9 9207 nn0le2xi 9318 numltc 9501 declti 9513 sqge0i 10737 faclbnd2 10853 ege2le3 11855 cos2bnd 11944 3dvdsdec 12049 n2dvdsm1 12097 n2dvds3 12099 pockthi 12554 dec2dvds 12607 dveflem 15070 tangtx 15182 lgsdir2lem2 15378 ex-fl 15479 |
| Copyright terms: Public domain | W3C validator |