Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtrr.1 | |
breqtrr.2 |
Ref | Expression |
---|---|
breqtrri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 | |
2 | breqtrr.2 | . . 3 | |
3 | 2 | eqcomi 2179 | . 2 |
4 | 1, 3 | breqtri 4023 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 |
This theorem is referenced by: 3brtr4i 4028 ensn1 6786 pw1dom2 7216 0lt1sr 7739 0le2 8982 2pos 8983 3pos 8986 4pos 8989 5pos 8992 6pos 8993 7pos 8994 8pos 8995 9pos 8996 1lt2 9061 2lt3 9062 3lt4 9064 4lt5 9067 5lt6 9071 6lt7 9076 7lt8 9082 8lt9 9089 nn0le2xi 9199 numltc 9382 declti 9394 sqge0i 10576 faclbnd2 10690 ege2le3 11647 cos2bnd 11736 3dvdsdec 11837 n2dvdsm1 11885 n2dvds3 11887 pockthi 12323 dveflem 13758 tangtx 13830 lgsdir2lem2 14001 ex-fl 14037 |
Copyright terms: Public domain | W3C validator |