ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri Unicode version

Theorem breqtrri 4009
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1  |-  A R B
breqtrr.2  |-  C  =  B
Assertion
Ref Expression
breqtrri  |-  A R C

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2  |-  A R B
2 breqtrr.2 . . 3  |-  C  =  B
32eqcomi 2169 . 2  |-  B  =  C
41, 3breqtri 4007 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  3brtr4i  4012  ensn1  6762  pw1dom2  7183  0lt1sr  7706  0le2  8947  2pos  8948  3pos  8951  4pos  8954  5pos  8957  6pos  8958  7pos  8959  8pos  8960  9pos  8961  1lt2  9026  2lt3  9027  3lt4  9029  4lt5  9032  5lt6  9036  6lt7  9041  7lt8  9047  8lt9  9054  nn0le2xi  9164  numltc  9347  declti  9359  sqge0i  10541  faclbnd2  10655  ege2le3  11612  cos2bnd  11701  3dvdsdec  11802  n2dvdsm1  11850  n2dvds3  11852  pockthi  12288  dveflem  13327  tangtx  13399  lgsdir2lem2  13570  ex-fl  13606
  Copyright terms: Public domain W3C validator