ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4049
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4031 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019
This theorem is referenced by:  ofrval  6118  phplem2  6882  ltaddnq  7437  prarloclemarch2  7449  prmuloclemcalc  7595  axcaucvglemcau  7928  apreap  8575  ltmul1  8580  divap1d  8789  div2subap  8825  lemul2a  8847  mul2lt0rlt0  9791  xleadd2a  9906  monoord2  10510  expubnd  10611  bernneq2  10676  nn0ltexp2  10724  apexp1  10733  resqrexlemcalc2  11059  resqrexlemcalc3  11060  abs2dif2  11151  bdtrilem  11282  bdtri  11283  xrmaxaddlem  11303  fsum00  11505  iserabs  11518  geosergap  11549  mertenslemi1  11578  eftlub  11733  eirraplem  11819  unitmulcl  13480  unitgrp  13483  xblss2  14382  xmstri2  14447  mstri2  14448  xmstri  14449  mstri  14450  xmstri3  14451  mstri3  14452  msrtri  14453  logdivlti  14779  2sqlem8  14948  apdifflemr  15274
  Copyright terms: Public domain W3C validator