ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4075
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4057 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  ofrval  6169  phplem2  6950  ltaddnq  7520  prarloclemarch2  7532  prmuloclemcalc  7678  axcaucvglemcau  8011  apreap  8660  ltmul1  8665  divap1d  8874  div2subap  8910  lemul2a  8932  mul2lt0rlt0  9881  xleadd2a  9996  monoord2  10631  expubnd  10741  bernneq2  10806  nn0ltexp2  10854  apexp1  10863  resqrexlemcalc2  11326  resqrexlemcalc3  11327  abs2dif2  11418  bdtrilem  11550  bdtri  11551  xrmaxaddlem  11571  fsum00  11773  iserabs  11786  geosergap  11817  mertenslemi1  11846  eftlub  12001  eirraplem  12088  bitscmp  12269  unitmulcl  13875  unitgrp  13878  xblss2  14877  xmstri2  14942  mstri2  14943  xmstri  14944  mstri  14945  xmstri3  14946  mstri3  14947  msrtri  14948  logdivlti  15353  perfectlem2  15472  2sqlem8  15600  apdifflemr  15986
  Copyright terms: Public domain W3C validator