ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4012
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 3994 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 146 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   class class class wbr 3981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982
This theorem is referenced by:  ofrval  6059  phplem2  6815  ltaddnq  7344  prarloclemarch2  7356  prmuloclemcalc  7502  axcaucvglemcau  7835  apreap  8481  ltmul1  8486  divap1d  8693  div2subap  8729  lemul2a  8750  mul2lt0rlt0  9691  xleadd2a  9806  monoord2  10408  expubnd  10508  bernneq2  10572  nn0ltexp2  10619  apexp1  10627  resqrexlemcalc2  10953  resqrexlemcalc3  10954  abs2dif2  11045  bdtrilem  11176  bdtri  11177  xrmaxaddlem  11197  fsum00  11399  iserabs  11412  geosergap  11443  mertenslemi1  11472  eftlub  11627  eirraplem  11713  xblss2  13005  xmstri2  13070  mstri2  13071  xmstri  13072  mstri  13073  xmstri3  13074  mstri3  13075  msrtri  13076  logdivlti  13402  2sqlem8  13559  apdifflemr  13886
  Copyright terms: Public domain W3C validator