Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 | |
3brtr3d.2 | |
3brtr3d.3 |
Ref | Expression |
---|---|
3brtr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 | . 2 | |
2 | 3brtr3d.2 | . . 3 | |
3 | 3brtr3d.3 | . . 3 | |
4 | 2, 3 | breq12d 4002 | . 2 |
5 | 1, 4 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: ofrval 6071 phplem2 6831 ltaddnq 7369 prarloclemarch2 7381 prmuloclemcalc 7527 axcaucvglemcau 7860 apreap 8506 ltmul1 8511 divap1d 8718 div2subap 8754 lemul2a 8775 mul2lt0rlt0 9716 xleadd2a 9831 monoord2 10433 expubnd 10533 bernneq2 10597 nn0ltexp2 10644 apexp1 10652 resqrexlemcalc2 10979 resqrexlemcalc3 10980 abs2dif2 11071 bdtrilem 11202 bdtri 11203 xrmaxaddlem 11223 fsum00 11425 iserabs 11438 geosergap 11469 mertenslemi1 11498 eftlub 11653 eirraplem 11739 xblss2 13199 xmstri2 13264 mstri2 13265 xmstri 13266 mstri 13267 xmstri3 13268 mstri3 13269 msrtri 13270 logdivlti 13596 2sqlem8 13753 apdifflemr 14079 |
Copyright terms: Public domain | W3C validator |