| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 |
|
| 3brtr3d.2 |
|
| 3brtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 |
. 2
| |
| 2 | 3brtr3d.2 |
. . 3
| |
| 3 | 3brtr3d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4047 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: ofrval 6150 phplem2 6923 ltaddnq 7491 prarloclemarch2 7503 prmuloclemcalc 7649 axcaucvglemcau 7982 apreap 8631 ltmul1 8636 divap1d 8845 div2subap 8881 lemul2a 8903 mul2lt0rlt0 9851 xleadd2a 9966 monoord2 10595 expubnd 10705 bernneq2 10770 nn0ltexp2 10818 apexp1 10827 resqrexlemcalc2 11197 resqrexlemcalc3 11198 abs2dif2 11289 bdtrilem 11421 bdtri 11422 xrmaxaddlem 11442 fsum00 11644 iserabs 11657 geosergap 11688 mertenslemi1 11717 eftlub 11872 eirraplem 11959 bitscmp 12140 unitmulcl 13745 unitgrp 13748 xblss2 14725 xmstri2 14790 mstri2 14791 xmstri 14792 mstri 14793 xmstri3 14794 mstri3 14795 msrtri 14796 logdivlti 15201 perfectlem2 15320 2sqlem8 15448 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |