| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 |
|
| 3brtr3d.2 |
|
| 3brtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 |
. 2
| |
| 2 | 3brtr3d.2 |
. . 3
| |
| 3 | 3brtr3d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4095 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: ofrval 6227 phplem2 7010 ltaddnq 7590 prarloclemarch2 7602 prmuloclemcalc 7748 axcaucvglemcau 8081 apreap 8730 ltmul1 8735 divap1d 8944 div2subap 8980 lemul2a 9002 mul2lt0rlt0 9951 xleadd2a 10066 monoord2 10703 expubnd 10813 bernneq2 10878 nn0ltexp2 10926 apexp1 10935 resqrexlemcalc2 11521 resqrexlemcalc3 11522 abs2dif2 11613 bdtrilem 11745 bdtri 11746 xrmaxaddlem 11766 fsum00 11968 iserabs 11981 geosergap 12012 mertenslemi1 12041 eftlub 12196 eirraplem 12283 bitscmp 12464 unitmulcl 14071 unitgrp 14074 xblss2 15073 xmstri2 15138 mstri2 15139 xmstri 15140 mstri 15141 xmstri3 15142 mstri3 15143 msrtri 15144 logdivlti 15549 perfectlem2 15668 2sqlem8 15796 apdifflemr 16374 |
| Copyright terms: Public domain | W3C validator |