| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 |
|
| 3brtr3d.2 |
|
| 3brtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 |
. 2
| |
| 2 | 3brtr3d.2 |
. . 3
| |
| 3 | 3brtr3d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4056 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 |
| This theorem is referenced by: ofrval 6168 phplem2 6949 ltaddnq 7519 prarloclemarch2 7531 prmuloclemcalc 7677 axcaucvglemcau 8010 apreap 8659 ltmul1 8664 divap1d 8873 div2subap 8909 lemul2a 8931 mul2lt0rlt0 9880 xleadd2a 9995 monoord2 10629 expubnd 10739 bernneq2 10804 nn0ltexp2 10852 apexp1 10861 resqrexlemcalc2 11297 resqrexlemcalc3 11298 abs2dif2 11389 bdtrilem 11521 bdtri 11522 xrmaxaddlem 11542 fsum00 11744 iserabs 11757 geosergap 11788 mertenslemi1 11817 eftlub 11972 eirraplem 12059 bitscmp 12240 unitmulcl 13846 unitgrp 13849 xblss2 14848 xmstri2 14913 mstri2 14914 xmstri 14915 mstri 14916 xmstri3 14917 mstri3 14918 msrtri 14919 logdivlti 15324 perfectlem2 15443 2sqlem8 15571 apdifflemr 15948 |
| Copyright terms: Public domain | W3C validator |