| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 |
|
| 3brtr3d.2 |
|
| 3brtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 |
. 2
| |
| 2 | 3brtr3d.2 |
. . 3
| |
| 3 | 3brtr3d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4072 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: ofrval 6192 phplem2 6975 ltaddnq 7555 prarloclemarch2 7567 prmuloclemcalc 7713 axcaucvglemcau 8046 apreap 8695 ltmul1 8700 divap1d 8909 div2subap 8945 lemul2a 8967 mul2lt0rlt0 9916 xleadd2a 10031 monoord2 10668 expubnd 10778 bernneq2 10843 nn0ltexp2 10891 apexp1 10900 resqrexlemcalc2 11441 resqrexlemcalc3 11442 abs2dif2 11533 bdtrilem 11665 bdtri 11666 xrmaxaddlem 11686 fsum00 11888 iserabs 11901 geosergap 11932 mertenslemi1 11961 eftlub 12116 eirraplem 12203 bitscmp 12384 unitmulcl 13990 unitgrp 13993 xblss2 14992 xmstri2 15057 mstri2 15058 xmstri 15059 mstri 15060 xmstri3 15061 mstri3 15062 msrtri 15063 logdivlti 15468 perfectlem2 15587 2sqlem8 15715 apdifflemr 16188 |
| Copyright terms: Public domain | W3C validator |