ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4020
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4002 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 146 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  ofrval  6071  phplem2  6831  ltaddnq  7369  prarloclemarch2  7381  prmuloclemcalc  7527  axcaucvglemcau  7860  apreap  8506  ltmul1  8511  divap1d  8718  div2subap  8754  lemul2a  8775  mul2lt0rlt0  9716  xleadd2a  9831  monoord2  10433  expubnd  10533  bernneq2  10597  nn0ltexp2  10644  apexp1  10652  resqrexlemcalc2  10979  resqrexlemcalc3  10980  abs2dif2  11071  bdtrilem  11202  bdtri  11203  xrmaxaddlem  11223  fsum00  11425  iserabs  11438  geosergap  11469  mertenslemi1  11498  eftlub  11653  eirraplem  11739  xblss2  13199  xmstri2  13264  mstri2  13265  xmstri  13266  mstri  13267  xmstri3  13268  mstri3  13269  msrtri  13270  logdivlti  13596  2sqlem8  13753  apdifflemr  14079
  Copyright terms: Public domain W3C validator