![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3brtr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3brtr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3brtr3d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breq12d 4042 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: ofrval 6141 phplem2 6909 ltaddnq 7467 prarloclemarch2 7479 prmuloclemcalc 7625 axcaucvglemcau 7958 apreap 8606 ltmul1 8611 divap1d 8820 div2subap 8856 lemul2a 8878 mul2lt0rlt0 9825 xleadd2a 9940 monoord2 10557 expubnd 10667 bernneq2 10732 nn0ltexp2 10780 apexp1 10789 resqrexlemcalc2 11159 resqrexlemcalc3 11160 abs2dif2 11251 bdtrilem 11382 bdtri 11383 xrmaxaddlem 11403 fsum00 11605 iserabs 11618 geosergap 11649 mertenslemi1 11678 eftlub 11833 eirraplem 11920 unitmulcl 13609 unitgrp 13612 xblss2 14573 xmstri2 14638 mstri2 14639 xmstri 14640 mstri 14641 xmstri3 14642 mstri3 14643 msrtri 14644 logdivlti 15016 2sqlem8 15210 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |