ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4090
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4072 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  ofrval  6192  phplem2  6975  ltaddnq  7555  prarloclemarch2  7567  prmuloclemcalc  7713  axcaucvglemcau  8046  apreap  8695  ltmul1  8700  divap1d  8909  div2subap  8945  lemul2a  8967  mul2lt0rlt0  9916  xleadd2a  10031  monoord2  10668  expubnd  10778  bernneq2  10843  nn0ltexp2  10891  apexp1  10900  resqrexlemcalc2  11441  resqrexlemcalc3  11442  abs2dif2  11533  bdtrilem  11665  bdtri  11666  xrmaxaddlem  11686  fsum00  11888  iserabs  11901  geosergap  11932  mertenslemi1  11961  eftlub  12116  eirraplem  12203  bitscmp  12384  unitmulcl  13990  unitgrp  13993  xblss2  14992  xmstri2  15057  mstri2  15058  xmstri  15059  mstri  15060  xmstri3  15061  mstri3  15062  msrtri  15063  logdivlti  15468  perfectlem2  15587  2sqlem8  15715  apdifflemr  16188
  Copyright terms: Public domain W3C validator