Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 | |
3brtr3d.2 | |
3brtr3d.3 |
Ref | Expression |
---|---|
3brtr3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 | . 2 | |
2 | 3brtr3d.2 | . . 3 | |
3 | 3brtr3d.3 | . . 3 | |
4 | 2, 3 | breq12d 4000 | . 2 |
5 | 1, 4 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: ofrval 6068 phplem2 6827 ltaddnq 7356 prarloclemarch2 7368 prmuloclemcalc 7514 axcaucvglemcau 7847 apreap 8493 ltmul1 8498 divap1d 8705 div2subap 8741 lemul2a 8762 mul2lt0rlt0 9703 xleadd2a 9818 monoord2 10420 expubnd 10520 bernneq2 10584 nn0ltexp2 10631 apexp1 10639 resqrexlemcalc2 10966 resqrexlemcalc3 10967 abs2dif2 11058 bdtrilem 11189 bdtri 11190 xrmaxaddlem 11210 fsum00 11412 iserabs 11425 geosergap 11456 mertenslemi1 11485 eftlub 11640 eirraplem 11726 xblss2 13158 xmstri2 13223 mstri2 13224 xmstri 13225 mstri 13226 xmstri3 13227 mstri3 13228 msrtri 13229 logdivlti 13555 2sqlem8 13712 apdifflemr 14039 |
Copyright terms: Public domain | W3C validator |