| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 |
|
| 3brtr3d.2 |
|
| 3brtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 |
. 2
| |
| 2 | 3brtr3d.2 |
. . 3
| |
| 3 | 3brtr3d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4057 |
. 2
|
| 5 | 1, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: ofrval 6169 phplem2 6950 ltaddnq 7520 prarloclemarch2 7532 prmuloclemcalc 7678 axcaucvglemcau 8011 apreap 8660 ltmul1 8665 divap1d 8874 div2subap 8910 lemul2a 8932 mul2lt0rlt0 9881 xleadd2a 9996 monoord2 10631 expubnd 10741 bernneq2 10806 nn0ltexp2 10854 apexp1 10863 resqrexlemcalc2 11326 resqrexlemcalc3 11327 abs2dif2 11418 bdtrilem 11550 bdtri 11551 xrmaxaddlem 11571 fsum00 11773 iserabs 11786 geosergap 11817 mertenslemi1 11846 eftlub 12001 eirraplem 12088 bitscmp 12269 unitmulcl 13875 unitgrp 13878 xblss2 14877 xmstri2 14942 mstri2 14943 xmstri 14944 mstri 14945 xmstri3 14946 mstri3 14947 msrtri 14948 logdivlti 15353 perfectlem2 15472 2sqlem8 15600 apdifflemr 15986 |
| Copyright terms: Public domain | W3C validator |