![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3brtr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3brtr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3brtr3d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breq12d 4031 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 |
This theorem is referenced by: ofrval 6118 phplem2 6882 ltaddnq 7437 prarloclemarch2 7449 prmuloclemcalc 7595 axcaucvglemcau 7928 apreap 8575 ltmul1 8580 divap1d 8789 div2subap 8825 lemul2a 8847 mul2lt0rlt0 9791 xleadd2a 9906 monoord2 10510 expubnd 10611 bernneq2 10676 nn0ltexp2 10724 apexp1 10733 resqrexlemcalc2 11059 resqrexlemcalc3 11060 abs2dif2 11151 bdtrilem 11282 bdtri 11283 xrmaxaddlem 11303 fsum00 11505 iserabs 11518 geosergap 11549 mertenslemi1 11578 eftlub 11733 eirraplem 11819 unitmulcl 13480 unitgrp 13483 xblss2 14382 xmstri2 14447 mstri2 14448 xmstri 14449 mstri 14450 xmstri3 14451 mstri3 14452 msrtri 14453 logdivlti 14779 2sqlem8 14948 apdifflemr 15274 |
Copyright terms: Public domain | W3C validator |