![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr3d | Unicode version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3brtr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3brtr3d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3brtr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3brtr3d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | breq12d 4043 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: ofrval 6143 phplem2 6911 ltaddnq 7469 prarloclemarch2 7481 prmuloclemcalc 7627 axcaucvglemcau 7960 apreap 8608 ltmul1 8613 divap1d 8822 div2subap 8858 lemul2a 8880 mul2lt0rlt0 9828 xleadd2a 9943 monoord2 10560 expubnd 10670 bernneq2 10735 nn0ltexp2 10783 apexp1 10792 resqrexlemcalc2 11162 resqrexlemcalc3 11163 abs2dif2 11254 bdtrilem 11385 bdtri 11386 xrmaxaddlem 11406 fsum00 11608 iserabs 11621 geosergap 11652 mertenslemi1 11681 eftlub 11836 eirraplem 11923 unitmulcl 13612 unitgrp 13615 xblss2 14584 xmstri2 14649 mstri2 14650 xmstri 14651 mstri 14652 xmstri3 14653 mstri3 14654 msrtri 14655 logdivlti 15057 2sqlem8 15280 apdifflemr 15607 |
Copyright terms: Public domain | W3C validator |