ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4113
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4095 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   class class class wbr 4082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083
This theorem is referenced by:  ofrval  6227  phplem2  7010  ltaddnq  7590  prarloclemarch2  7602  prmuloclemcalc  7748  axcaucvglemcau  8081  apreap  8730  ltmul1  8735  divap1d  8944  div2subap  8980  lemul2a  9002  mul2lt0rlt0  9951  xleadd2a  10066  monoord2  10703  expubnd  10813  bernneq2  10878  nn0ltexp2  10926  apexp1  10935  resqrexlemcalc2  11521  resqrexlemcalc3  11522  abs2dif2  11613  bdtrilem  11745  bdtri  11746  xrmaxaddlem  11766  fsum00  11968  iserabs  11981  geosergap  12012  mertenslemi1  12041  eftlub  12196  eirraplem  12283  bitscmp  12464  unitmulcl  14071  unitgrp  14074  xblss2  15073  xmstri2  15138  mstri2  15139  xmstri  15140  mstri  15141  xmstri3  15142  mstri3  15143  msrtri  15144  logdivlti  15549  perfectlem2  15668  2sqlem8  15796  apdifflemr  16374
  Copyright terms: Public domain W3C validator