ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3d Unicode version

Theorem 3brtr3d 4060
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
Hypotheses
Ref Expression
3brtr3d.1  |-  ( ph  ->  A R B )
3brtr3d.2  |-  ( ph  ->  A  =  C )
3brtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3brtr3d  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3d
StepHypRef Expression
1 3brtr3d.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
3 3brtr3d.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3breq12d 4042 . 2  |-  ( ph  ->  ( A R B  <-> 
C R D ) )
51, 4mpbid 147 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  ofrval  6141  phplem2  6909  ltaddnq  7467  prarloclemarch2  7479  prmuloclemcalc  7625  axcaucvglemcau  7958  apreap  8606  ltmul1  8611  divap1d  8820  div2subap  8856  lemul2a  8878  mul2lt0rlt0  9825  xleadd2a  9940  monoord2  10557  expubnd  10667  bernneq2  10732  nn0ltexp2  10780  apexp1  10789  resqrexlemcalc2  11159  resqrexlemcalc3  11160  abs2dif2  11251  bdtrilem  11382  bdtri  11383  xrmaxaddlem  11403  fsum00  11605  iserabs  11618  geosergap  11649  mertenslemi1  11678  eftlub  11833  eirraplem  11920  unitmulcl  13609  unitgrp  13612  xblss2  14573  xmstri2  14638  mstri2  14639  xmstri  14640  mstri  14641  xmstri3  14642  mstri3  14643  msrtri  14644  logdivlti  15016  2sqlem8  15210  apdifflemr  15537
  Copyright terms: Public domain W3C validator