ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decltc Unicode version

Theorem decltc 9502
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
declt.a  |-  A  e. 
NN0
declt.b  |-  B  e. 
NN0
decltc.c  |-  C  e. 
NN0
decltc.d  |-  D  e. 
NN0
decltc.s  |-  C  < ; 1 0
decltc.l  |-  A  < 
B
Assertion
Ref Expression
decltc  |- ; A C  < ; B D

Proof of Theorem decltc
StepHypRef Expression
1 10nn 9489 . . 3  |- ; 1 0  e.  NN
2 declt.a . . 3  |-  A  e. 
NN0
3 declt.b . . 3  |-  B  e. 
NN0
4 decltc.c . . 3  |-  C  e. 
NN0
5 decltc.d . . 3  |-  D  e. 
NN0
6 decltc.s . . 3  |-  C  < ; 1 0
7 decltc.l . . 3  |-  A  < 
B
81, 2, 3, 4, 5, 6, 7numltc 9499 . 2  |-  ( (; 1
0  x.  A )  +  C )  < 
( (; 1 0  x.  B
)  +  D )
9 dfdec10 9477 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
10 dfdec10 9477 . 2  |- ; B D  =  ( (; 1 0  x.  B
)  +  D )
118, 9, 103brtr4i 4064 1  |- ; A C  < ; B D
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078   NN0cn0 9266  ;cdc 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475
This theorem is referenced by:  declth  9503  3decltc  9506  2expltfac  12633
  Copyright terms: Public domain W3C validator