| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opbrop | Unicode version | ||
| Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| opbrop.1 |
|
| opbrop.2 |
|
| Ref | Expression |
|---|---|
| opbrop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opbrop.1 |
. . . 4
| |
| 2 | 1 | copsex4g 4281 |
. . 3
|
| 3 | 2 | anbi2d 464 |
. 2
|
| 4 | opexg 4262 |
. . 3
| |
| 5 | opexg 4262 |
. . 3
| |
| 6 | eleq1 2259 |
. . . . . 6
| |
| 7 | 6 | anbi1d 465 |
. . . . 5
|
| 8 | eqeq1 2203 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
|
| 10 | 9 | anbi1d 465 |
. . . . . 6
|
| 11 | 10 | 4exbidv 1884 |
. . . . 5
|
| 12 | 7, 11 | anbi12d 473 |
. . . 4
|
| 13 | eleq1 2259 |
. . . . . 6
| |
| 14 | 13 | anbi2d 464 |
. . . . 5
|
| 15 | eqeq1 2203 |
. . . . . . . 8
| |
| 16 | 15 | anbi2d 464 |
. . . . . . 7
|
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | 17 | 4exbidv 1884 |
. . . . 5
|
| 19 | 14, 18 | anbi12d 473 |
. . . 4
|
| 20 | opbrop.2 |
. . . 4
| |
| 21 | 12, 19, 20 | brabg 4304 |
. . 3
|
| 22 | 4, 5, 21 | syl2an 289 |
. 2
|
| 23 | opelxpi 4696 |
. . . 4
| |
| 24 | opelxpi 4696 |
. . . 4
| |
| 25 | 23, 24 | anim12i 338 |
. . 3
|
| 26 | 25 | biantrurd 305 |
. 2
|
| 27 | 3, 22, 26 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: ecopoveq 6698 oviec 6709 |
| Copyright terms: Public domain | W3C validator |