| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opbrop | Unicode version | ||
| Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| opbrop.1 | 
 | 
| opbrop.2 | 
 | 
| Ref | Expression | 
|---|---|
| opbrop | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opbrop.1 | 
. . . 4
 | |
| 2 | 1 | copsex4g 4280 | 
. . 3
 | 
| 3 | 2 | anbi2d 464 | 
. 2
 | 
| 4 | opexg 4261 | 
. . 3
 | |
| 5 | opexg 4261 | 
. . 3
 | |
| 6 | eleq1 2259 | 
. . . . . 6
 | |
| 7 | 6 | anbi1d 465 | 
. . . . 5
 | 
| 8 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 9 | 8 | anbi1d 465 | 
. . . . . . 7
 | 
| 10 | 9 | anbi1d 465 | 
. . . . . 6
 | 
| 11 | 10 | 4exbidv 1884 | 
. . . . 5
 | 
| 12 | 7, 11 | anbi12d 473 | 
. . . 4
 | 
| 13 | eleq1 2259 | 
. . . . . 6
 | |
| 14 | 13 | anbi2d 464 | 
. . . . 5
 | 
| 15 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 16 | 15 | anbi2d 464 | 
. . . . . . 7
 | 
| 17 | 16 | anbi1d 465 | 
. . . . . 6
 | 
| 18 | 17 | 4exbidv 1884 | 
. . . . 5
 | 
| 19 | 14, 18 | anbi12d 473 | 
. . . 4
 | 
| 20 | opbrop.2 | 
. . . 4
 | |
| 21 | 12, 19, 20 | brabg 4303 | 
. . 3
 | 
| 22 | 4, 5, 21 | syl2an 289 | 
. 2
 | 
| 23 | opelxpi 4695 | 
. . . 4
 | |
| 24 | opelxpi 4695 | 
. . . 4
 | |
| 25 | 23, 24 | anim12i 338 | 
. . 3
 | 
| 26 | 25 | biantrurd 305 | 
. 2
 | 
| 27 | 3, 22, 26 | 3bitr4d 220 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: ecopoveq 6689 oviec 6700 | 
| Copyright terms: Public domain | W3C validator |