| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opbrop | Unicode version | ||
| Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| opbrop.1 |
|
| opbrop.2 |
|
| Ref | Expression |
|---|---|
| opbrop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opbrop.1 |
. . . 4
| |
| 2 | 1 | copsex4g 4290 |
. . 3
|
| 3 | 2 | anbi2d 464 |
. 2
|
| 4 | opexg 4271 |
. . 3
| |
| 5 | opexg 4271 |
. . 3
| |
| 6 | eleq1 2267 |
. . . . . 6
| |
| 7 | 6 | anbi1d 465 |
. . . . 5
|
| 8 | eqeq1 2211 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
|
| 10 | 9 | anbi1d 465 |
. . . . . 6
|
| 11 | 10 | 4exbidv 1892 |
. . . . 5
|
| 12 | 7, 11 | anbi12d 473 |
. . . 4
|
| 13 | eleq1 2267 |
. . . . . 6
| |
| 14 | 13 | anbi2d 464 |
. . . . 5
|
| 15 | eqeq1 2211 |
. . . . . . . 8
| |
| 16 | 15 | anbi2d 464 |
. . . . . . 7
|
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | 17 | 4exbidv 1892 |
. . . . 5
|
| 19 | 14, 18 | anbi12d 473 |
. . . 4
|
| 20 | opbrop.2 |
. . . 4
| |
| 21 | 12, 19, 20 | brabg 4314 |
. . 3
|
| 22 | 4, 5, 21 | syl2an 289 |
. 2
|
| 23 | opelxpi 4706 |
. . . 4
| |
| 24 | opelxpi 4706 |
. . . 4
| |
| 25 | 23, 24 | anim12i 338 |
. . 3
|
| 26 | 25 | biantrurd 305 |
. 2
|
| 27 | 3, 22, 26 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 |
| This theorem is referenced by: ecopoveq 6716 oviec 6727 |
| Copyright terms: Public domain | W3C validator |