ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opbrop Unicode version

Theorem opbrop 4753
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
opbrop.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
Assertion
Ref Expression
opbrop  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    x, D, y, z, w, v, u   
x, S, y, z, w, v, u    ph, x, y    ps, z, w, v, u
Allowed substitution hints:    ph( z, w, v, u)    ps( x, y)    R( x, y, z, w, v, u)

Proof of Theorem opbrop
StepHypRef Expression
1 opbrop.1 . . . 4  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
21copsex4g 4290 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph )  <->  ps )
)
32anbi2d 464 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) )  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
4 opexg 4271 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
5 opexg 4271 . . 3  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e. 
_V )
6 eleq1 2267 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( S  X.  S
)  <->  <. A ,  B >.  e.  ( S  X.  S ) ) )
76anbi1d 465 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) ) )
8 eqeq1 2211 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. z ,  w >.  <->  <. A ,  B >.  =  <. z ,  w >. )
)
98anbi1d 465 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
109anbi1d 465 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
11104exbidv 1892 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
127, 11anbi12d 473 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
)  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) ) )
13 eleq1 2267 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( S  X.  S
)  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
1413anbi2d 464 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) ) )
15 eqeq1 2211 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. v ,  u >.  <->  <. C ,  D >.  =  <. v ,  u >. )
)
1615anbi2d 464 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )
) )
1716anbi1d 465 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph ) ) )
18174exbidv 1892 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  E. z E. w E. v E. u ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph )
) )
1914, 18anbi12d 473 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) )  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
20 opbrop.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
2112, 19, 20brabg 4314 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  <. C ,  D >.  e.  _V )  ->  ( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
224, 5, 21syl2an 289 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
23 opelxpi 4706 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
24 opelxpi 4706 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
2523, 24anim12i 338 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) )
2625biantrurd 305 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ps  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  ps ) ) )
273, 22, 263bitr4d 220 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   _Vcvv 2771   <.cop 3635   class class class wbr 4043   {copab 4103    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680
This theorem is referenced by:  ecopoveq  6716  oviec  6727
  Copyright terms: Public domain W3C validator