ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opbrop Unicode version

Theorem opbrop 4702
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
opbrop.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
Assertion
Ref Expression
opbrop  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    x, D, y, z, w, v, u   
x, S, y, z, w, v, u    ph, x, y    ps, z, w, v, u
Allowed substitution hints:    ph( z, w, v, u)    ps( x, y)    R( x, y, z, w, v, u)

Proof of Theorem opbrop
StepHypRef Expression
1 opbrop.1 . . . 4  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
21copsex4g 4244 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph )  <->  ps )
)
32anbi2d 464 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) )  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
4 opexg 4225 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
5 opexg 4225 . . 3  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e. 
_V )
6 eleq1 2240 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( S  X.  S
)  <->  <. A ,  B >.  e.  ( S  X.  S ) ) )
76anbi1d 465 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) ) )
8 eqeq1 2184 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. z ,  w >.  <->  <. A ,  B >.  =  <. z ,  w >. )
)
98anbi1d 465 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
109anbi1d 465 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
11104exbidv 1870 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
127, 11anbi12d 473 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
)  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) ) )
13 eleq1 2240 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( S  X.  S
)  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
1413anbi2d 464 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) ) )
15 eqeq1 2184 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. v ,  u >.  <->  <. C ,  D >.  =  <. v ,  u >. )
)
1615anbi2d 464 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )
) )
1716anbi1d 465 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph ) ) )
18174exbidv 1870 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  E. z E. w E. v E. u ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph )
) )
1914, 18anbi12d 473 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) )  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
20 opbrop.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
2112, 19, 20brabg 4266 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  <. C ,  D >.  e.  _V )  ->  ( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
224, 5, 21syl2an 289 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
23 opelxpi 4655 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
24 opelxpi 4655 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
2523, 24anim12i 338 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) )
2625biantrurd 305 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ps  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  ps ) ) )
273, 22, 263bitr4d 220 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   <.cop 3594   class class class wbr 4000   {copab 4060    X. cxp 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-xp 4629
This theorem is referenced by:  ecopoveq  6624  oviec  6635
  Copyright terms: Public domain W3C validator