ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexexg Unicode version

Theorem abrexexg 6202
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
abrexexg  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem abrexexg
StepHypRef Expression
1 eqid 2204 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 4925 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 mptexg 5808 . . 3  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4942 . . 3  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
62, 5eqeltrrid 2292 1  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484   _Vcvv 2771    |-> cmpt 4104   ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by:  iunexg  6203  qsexg  6677  shftfvalg  11071  plyval  15146
  Copyright terms: Public domain W3C validator