ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexexg Unicode version

Theorem abrexexg 6086
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
abrexexg  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem abrexexg
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 4852 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 mptexg 5710 . . 3  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4869 . . 3  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
62, 5eqeltrrid 2254 1  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  iunexg  6087  qsexg  6557  shftfvalg  10760
  Copyright terms: Public domain W3C validator