ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumdencl Unicode version

Theorem qnumdencl 12190
Description: Lemma for qnumcl 12191 and qdencl 12192. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdencl  |-  ( A  e.  QQ  ->  (
(numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN ) )

Proof of Theorem qnumdencl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 qredeu 12100 . . 3  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
2 riotacl 5848 . . 3  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
31, 2syl 14 . 2  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
4 elxp6 6173 . . 3  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  <->  ( ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >.  /\  (
( 1st `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  ZZ  /\  ( 2nd `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  NN ) ) )
5 qnumval 12188 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
65eleq1d 2246 . . . . . 6  |-  ( A  e.  QQ  ->  (
(numer `  A )  e.  ZZ  <->  ( 1st `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  ZZ ) )
7 qdenval 12189 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
87eleq1d 2246 . . . . . 6  |-  ( A  e.  QQ  ->  (
(denom `  A )  e.  NN  <->  ( 2nd `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  NN ) )
96, 8anbi12d 473 . . . . 5  |-  ( A  e.  QQ  ->  (
( (numer `  A
)  e.  ZZ  /\  (denom `  A )  e.  NN )  <->  ( ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  ZZ  /\  ( 2nd `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  NN ) ) )
109biimprd 158 . . . 4  |-  ( A  e.  QQ  ->  (
( ( 1st `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  ZZ  /\  ( 2nd `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  NN )  ->  ( (numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN ) ) )
1110adantld 278 . . 3  |-  ( A  e.  QQ  ->  (
( ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >.  /\  (
( 1st `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  ZZ  /\  ( 2nd `  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) )  e.  NN ) )  ->  (
(numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN ) ) )
124, 11biimtrid 152 . 2  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  e.  ( ZZ  X.  NN )  ->  ( (numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN ) ) )
133, 12mpd 13 1  |-  ( A  e.  QQ  ->  (
(numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E!wreu 2457   <.cop 3597    X. cxp 4626   ` cfv 5218   iota_crio 5833  (class class class)co 5878   1stc1st 6142   2ndc2nd 6143   1c1 7815    / cdiv 8632   NNcn 8922   ZZcz 9256   QQcq 9622    gcd cgcd 11946  numercnumer 12184  denomcdenom 12185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-sup 6986  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-fl 10273  df-mod 10326  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-dvds 11798  df-gcd 11947  df-numer 12186  df-denom 12187
This theorem is referenced by:  qnumcl  12191  qdencl  12192
  Copyright terms: Public domain W3C validator