ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzgtdifelfzo Unicode version

Theorem eluzgtdifelfzo 10363
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( N  e.  ( ZZ>= `  A )  /\  B  <  A )  ->  ( N  -  A )  e.  ( 0..^ ( N  -  B ) ) ) )

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  A )  /\  B  <  A )  ->  N  e.  ( ZZ>= `  A )
)
21adantl 277 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  e.  ( ZZ>= `  A )
)
3 simpl 109 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
43adantr 276 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  A  e.  ZZ )
5 eluzelz 9692 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  ZZ )
65ad2antrr 488 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  A )  /\  B  <  A )  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  N  e.  ZZ )
7 simprr 531 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  A )  /\  B  <  A )  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  ZZ )
86, 7zsubcld 9535 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  A )  /\  B  <  A )  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( N  -  B )  e.  ZZ )
98ancoms 268 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( N  -  B )  e.  ZZ )
104, 9zaddcld 9534 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( A  +  ( N  -  B ) )  e.  ZZ )
11 zre 9411 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  B  e.  RR )
12 zre 9411 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  RR )
13 posdif 8563 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  0  <  ( A  -  B ) ) )
1413biimpd 144 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  0  <  ( A  -  B ) ) )
1511, 12, 14syl2anr 290 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  0  <  ( A  -  B ) ) )
1615adantld 278 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( N  e.  ( ZZ>= `  A )  /\  B  <  A )  ->  0  <  ( A  -  B )
) )
1716imp 124 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  0  <  ( A  -  B ) )
18 resubcl 8371 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
1912, 11, 18syl2an 289 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  RR )
2019adantr 276 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( A  -  B )  e.  RR )
21 eluzelre 9693 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  RR )
2221ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  e.  RR )
2320, 22ltaddposd 8637 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( 0  <  ( A  -  B )  <->  N  <  ( N  +  ( A  -  B ) ) ) )
2417, 23mpbid 147 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  <  ( N  +  ( A  -  B ) ) )
25 zcn 9412 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  A  e.  CC )
27 eluzelcn 9694 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  CC )
2827ad2antrl 490 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  e.  CC )
29 zcn 9412 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
3029adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  CC )
3130adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  B  e.  CC )
32 addsub12 8320 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( N  -  B ) )  =  ( N  +  ( A  -  B ) ) )
3332breq2d 4071 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  B  e.  CC )  ->  ( N  <  ( A  +  ( N  -  B
) )  <->  N  <  ( N  +  ( A  -  B ) ) ) )
3426, 28, 31, 33syl3anc 1250 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( N  <  ( A  +  ( N  -  B ) )  <->  N  <  ( N  +  ( A  -  B ) ) ) )
3524, 34mpbird 167 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  <  ( A  +  ( N  -  B ) ) )
36 elfzo2 10307 . . . 4  |-  ( N  e.  ( A..^ ( A  +  ( N  -  B ) ) )  <-> 
( N  e.  (
ZZ>= `  A )  /\  ( A  +  ( N  -  B )
)  e.  ZZ  /\  N  <  ( A  +  ( N  -  B
) ) ) )
372, 10, 35, 36syl3anbrc 1184 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  N  e.  ( A..^ ( A  +  ( N  -  B
) ) ) )
38 fzosubel3 10362 . . 3  |-  ( ( N  e.  ( A..^ ( A  +  ( N  -  B ) ) )  /\  ( N  -  B )  e.  ZZ )  ->  ( N  -  A )  e.  ( 0..^ ( N  -  B ) ) )
3937, 9, 38syl2anc 411 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( N  e.  ( ZZ>= `  A )  /\  B  <  A ) )  ->  ( N  -  A )  e.  ( 0..^ ( N  -  B ) ) )
4039ex 115 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( N  e.  ( ZZ>= `  A )  /\  B  <  A )  ->  ( N  -  A )  e.  ( 0..^ ( N  -  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    + caddc 7963    < clt 8142    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683  ..^cfzo 10299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by:  ige2m2fzo  10364
  Copyright terms: Public domain W3C validator