ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim Unicode version

Theorem cnplimcim 13705
Description: If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimcim.j  |-  J  =  ( Kt  A )
Assertion
Ref Expression
cnplimcim  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )

Proof of Theorem cnplimcim
Dummy variables  d  e  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6  |-  J  =  ( Kt  A )
2 cnplimcim.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
32cntoptopon 13601 . . . . . . 7  |-  K  e.  (TopOn `  CC )
4 simpl 109 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  A  C_  CC )
5 resttopon 13240 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( Kt  A )  e.  (TopOn `  A ) )
63, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( Kt  A )  e.  (TopOn `  A ) )
71, 6eqeltrid 2262 . . . . 5  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  J  e.  (TopOn `  A )
)
8 cnpf2 13276 . . . . . 6  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )  /\  F  e.  (
( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
983expia 1205 . . . . 5  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
107, 3, 9sylancl 413 . . . 4  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
1110imp 124 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
12 simplr 528 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  A )
1311, 12ffvelcdmd 5644 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  CC )
14 simpr 110 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F  e.  ( ( J  CnP  K ) `  B ) )
15 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  A  C_  CC )
16 cnxmet 13600 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
17 eqid 2175 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
18 eqid 2175 . . . . . . . . . . . . 13  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
1917, 2, 18metrest 13575 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
2016, 19mpan 424 . . . . . . . . . . 11  |-  ( A 
C_  CC  ->  ( Kt  A )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
211, 20eqtrid 2220 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
2215, 21syl 14 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
232a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  K  =  ( MetOpen `  ( abs  o. 
-  ) ) )
24 xmetres2 13448 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
2516, 15, 24sylancr 414 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
2616a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( abs 
o.  -  )  e.  ( *Met `  CC ) )
27 simplr 528 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  A )
2822, 23, 25, 26, 27metcnpd 13589 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) ) )
2911, 28syldan 282 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  <  e ) ) ) )
3014, 29mpbid 147 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) )
3130simprd 114 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
)
3212ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  A )
33 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  A )
3432, 33ovresd 6005 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( B ( abs  o.  -  ) z ) )
3515, 27sseldd 3154 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  CC )
3611, 35syldan 282 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  CC )
3736ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  CC )
38 simpll 527 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A  C_  CC )
3938ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  A  C_  CC )
4039, 33sseldd 3154 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  CC )
41 eqid 2175 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4241cnmetdval 13598 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  z  e.  CC )  ->  ( B ( abs 
o.  -  ) z
)  =  ( abs `  ( B  -  z
) ) )
4337, 40, 42syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( abs  o.  -  ) z )  =  ( abs `  ( B  -  z )
) )
4437, 40abssubd 11168 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( B  -  z ) )  =  ( abs `  (
z  -  B ) ) )
4534, 43, 443eqtrd 2212 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( abs `  ( z  -  B ) ) )
4645breq1d 4008 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
4746biimprd 158 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( abs `  (
z  -  B ) )  <  d  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4847adantld 278 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4913ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
5011ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  F : A --> CC )
5150, 33ffvelcdmd 5644 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
5241cnmetdval 13598 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  CC  /\  ( F `  z )  e.  CC )  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  =  ( abs `  ( ( F `  B )  -  ( F `  z )
) ) )
5349, 51, 52syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  B
)  -  ( F `
 z ) ) ) )
5449, 51abssubd 11168 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( ( F `
 B )  -  ( F `  z ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
5553, 54eqtrd 2208 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) ) )
5655breq1d 4008 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
) )
5756biimpd 144 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  ->  ( abs `  ( ( F `  z )  -  ( F `  B ) ) )  <  e ) )
5848, 57imim12d 74 . . . . . . . 8  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
5958ralimdva 2542 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6059reximdva 2577 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  e.  A
)  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6160ralimdva 2542 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  e
) ) )
6231, 61mpd 13 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) )
6311, 38, 36ellimc3ap 13699 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( ( F `  B )  e.  ( F lim CC  B
)  <->  ( ( F `
 B )  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) ) )
6413, 62, 63mpbir2and 944 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
6511, 64jca 306 . 2  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) )
6665ex 115 1  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454    C_ wss 3127   class class class wbr 3998    X. cxp 4618    |` cres 4622    o. ccom 4624   -->wf 5204   ` cfv 5208  (class class class)co 5865   CCcc 7784    < clt 7966    - cmin 8102   # cap 8512   RR+crp 9622   abscabs 10972   ↾t crest 12608   *Metcxmet 13049   MetOpencmopn 13054  TopOnctopon 13077    CnP ccnp 13255   lim CC climc 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-pm 6641  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-rest 12610  df-topgen 12629  df-psmet 13056  df-xmet 13057  df-met 13058  df-bl 13059  df-mopn 13060  df-top 13065  df-topon 13078  df-bases 13110  df-cnp 13258  df-limced 13694
This theorem is referenced by:  cnplimccntop  13708  cnlimcim  13709
  Copyright terms: Public domain W3C validator