ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim Unicode version

Theorem cnplimcim 14613
Description: If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimcim.j  |-  J  =  ( Kt  A )
Assertion
Ref Expression
cnplimcim  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )

Proof of Theorem cnplimcim
Dummy variables  d  e  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6  |-  J  =  ( Kt  A )
2 cnplimcim.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
32cntoptopon 14509 . . . . . . 7  |-  K  e.  (TopOn `  CC )
4 simpl 109 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  A  C_  CC )
5 resttopon 14148 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( Kt  A )  e.  (TopOn `  A ) )
63, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( Kt  A )  e.  (TopOn `  A ) )
71, 6eqeltrid 2276 . . . . 5  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  J  e.  (TopOn `  A )
)
8 cnpf2 14184 . . . . . 6  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )  /\  F  e.  (
( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
983expia 1207 . . . . 5  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
107, 3, 9sylancl 413 . . . 4  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
1110imp 124 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
12 simplr 528 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  A )
1311, 12ffvelcdmd 5673 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  CC )
14 simpr 110 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F  e.  ( ( J  CnP  K ) `  B ) )
15 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  A  C_  CC )
16 cnxmet 14508 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
17 eqid 2189 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
18 eqid 2189 . . . . . . . . . . . . 13  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
1917, 2, 18metrest 14483 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
2016, 19mpan 424 . . . . . . . . . . 11  |-  ( A 
C_  CC  ->  ( Kt  A )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
211, 20eqtrid 2234 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
2215, 21syl 14 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
232a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  K  =  ( MetOpen `  ( abs  o. 
-  ) ) )
24 xmetres2 14356 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
2516, 15, 24sylancr 414 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
2616a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( abs 
o.  -  )  e.  ( *Met `  CC ) )
27 simplr 528 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  A )
2822, 23, 25, 26, 27metcnpd 14497 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) ) )
2911, 28syldan 282 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  <  e ) ) ) )
3014, 29mpbid 147 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) )
3130simprd 114 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
)
3212ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  A )
33 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  A )
3432, 33ovresd 6038 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( B ( abs  o.  -  ) z ) )
3515, 27sseldd 3171 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  CC )
3611, 35syldan 282 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  CC )
3736ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  CC )
38 simpll 527 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A  C_  CC )
3938ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  A  C_  CC )
4039, 33sseldd 3171 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  CC )
41 eqid 2189 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4241cnmetdval 14506 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  z  e.  CC )  ->  ( B ( abs 
o.  -  ) z
)  =  ( abs `  ( B  -  z
) ) )
4337, 40, 42syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( abs  o.  -  ) z )  =  ( abs `  ( B  -  z )
) )
4437, 40abssubd 11237 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( B  -  z ) )  =  ( abs `  (
z  -  B ) ) )
4534, 43, 443eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( abs `  ( z  -  B ) ) )
4645breq1d 4028 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
4746biimprd 158 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( abs `  (
z  -  B ) )  <  d  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4847adantld 278 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4913ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
5011ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  F : A --> CC )
5150, 33ffvelcdmd 5673 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
5241cnmetdval 14506 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  CC  /\  ( F `  z )  e.  CC )  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  =  ( abs `  ( ( F `  B )  -  ( F `  z )
) ) )
5349, 51, 52syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  B
)  -  ( F `
 z ) ) ) )
5449, 51abssubd 11237 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( ( F `
 B )  -  ( F `  z ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
5553, 54eqtrd 2222 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) ) )
5655breq1d 4028 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
) )
5756biimpd 144 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  ->  ( abs `  ( ( F `  z )  -  ( F `  B ) ) )  <  e ) )
5848, 57imim12d 74 . . . . . . . 8  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
5958ralimdva 2557 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6059reximdva 2592 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  e.  A
)  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6160ralimdva 2557 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  e
) ) )
6231, 61mpd 13 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) )
6311, 38, 36ellimc3ap 14607 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( ( F `  B )  e.  ( F lim CC  B
)  <->  ( ( F `
 B )  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) ) )
6413, 62, 63mpbir2and 946 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
6511, 64jca 306 . 2  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) )
6665ex 115 1  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469    C_ wss 3144   class class class wbr 4018    X. cxp 4642    |` cres 4646    o. ccom 4648   -->wf 5231   ` cfv 5235  (class class class)co 5897   CCcc 7840    < clt 8023    - cmin 8159   # cap 8569   RR+crp 9685   abscabs 11041   ↾t crest 12747   *Metcxmet 13866   MetOpencmopn 13871  TopOnctopon 13987    CnP ccnp 14163   lim CC climc 14600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-pm 6678  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-cnp 14166  df-limced 14602
This theorem is referenced by:  cnplimccntop  14616  cnlimcim  14617
  Copyright terms: Public domain W3C validator