ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimcim Unicode version

Theorem cnplimcim 14175
Description: If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
cnplimcim.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimcim.j  |-  J  =  ( Kt  A )
Assertion
Ref Expression
cnplimcim  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )

Proof of Theorem cnplimcim
Dummy variables  d  e  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimcim.j . . . . . 6  |-  J  =  ( Kt  A )
2 cnplimcim.k . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
32cntoptopon 14071 . . . . . . 7  |-  K  e.  (TopOn `  CC )
4 simpl 109 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  A  C_  CC )
5 resttopon 13710 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( Kt  A )  e.  (TopOn `  A ) )
63, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( Kt  A )  e.  (TopOn `  A ) )
71, 6eqeltrid 2264 . . . . 5  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  J  e.  (TopOn `  A )
)
8 cnpf2 13746 . . . . . 6  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )  /\  F  e.  (
( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
983expia 1205 . . . . 5  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
107, 3, 9sylancl 413 . . . 4  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
1110imp 124 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
12 simplr 528 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  A )
1311, 12ffvelcdmd 5654 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  CC )
14 simpr 110 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  F  e.  ( ( J  CnP  K ) `  B ) )
15 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  A  C_  CC )
16 cnxmet 14070 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
17 eqid 2177 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
18 eqid 2177 . . . . . . . . . . . . 13  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
1917, 2, 18metrest 14045 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Kt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
2016, 19mpan 424 . . . . . . . . . . 11  |-  ( A 
C_  CC  ->  ( Kt  A )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
211, 20eqtrid 2222 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
2215, 21syl 14 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) ) )
232a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  K  =  ( MetOpen `  ( abs  o. 
-  ) ) )
24 xmetres2 13918 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
2516, 15, 24sylancr 414 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
2616a1i 9 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( abs 
o.  -  )  e.  ( *Met `  CC ) )
27 simplr 528 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  A )
2822, 23, 25, 26, 27metcnpd 14059 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) ) )
2911, 28syldan 282 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  <  e ) ) ) )
3014, 29mpbid 147 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
) )
3130simprd 114 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )
)
3212ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  A )
33 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  A )
3432, 33ovresd 6017 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( B ( abs  o.  -  ) z ) )
3515, 27sseldd 3158 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  CC )
3611, 35syldan 282 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  B  e.  CC )
3736ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  B  e.  CC )
38 simpll 527 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A  C_  CC )
3938ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  A  C_  CC )
4039, 33sseldd 3158 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  CC )
41 eqid 2177 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4241cnmetdval 14068 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  z  e.  CC )  ->  ( B ( abs 
o.  -  ) z
)  =  ( abs `  ( B  -  z
) ) )
4337, 40, 42syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( abs  o.  -  ) z )  =  ( abs `  ( B  -  z )
) )
4437, 40abssubd 11204 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( B  -  z ) )  =  ( abs `  (
z  -  B ) ) )
4534, 43, 443eqtrd 2214 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  =  ( abs `  ( z  -  B ) ) )
4645breq1d 4015 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
4746biimprd 158 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( abs `  (
z  -  B ) )  <  d  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4847adantld 278 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( B ( ( abs  o.  -  )  |`  ( A  X.  A
) ) z )  <  d ) )
4913ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  B )  e.  CC )
5011ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  F : A --> CC )
5150, 33ffvelcdmd 5654 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
5241cnmetdval 14068 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  CC  /\  ( F `  z )  e.  CC )  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  =  ( abs `  ( ( F `  B )  -  ( F `  z )
) ) )
5349, 51, 52syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  B
)  -  ( F `
 z ) ) ) )
5449, 51abssubd 11204 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( ( F `
 B )  -  ( F `  z ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  B ) ) ) )
5553, 54eqtrd 2210 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( F `  B
) ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) ) )
5655breq1d 4015 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  B )
) )  <  e
) )
5756biimpd 144 . . . . . . . . 9  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e  ->  ( abs `  ( ( F `  z )  -  ( F `  B ) ) )  <  e ) )
5848, 57imim12d 74 . . . . . . . 8  |-  ( ( ( ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
5958ralimdva 2544 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  -> 
( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6059reximdva 2579 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  e.  A
)  /\  F  e.  ( ( J  CnP  K ) `  B ) )  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) )
6160ralimdva 2544 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( B ( ( abs  o.  -  )  |`  ( A  X.  A ) ) z )  <  d  ->  ( ( F `  B ) ( abs 
o.  -  ) ( F `  z )
)  <  e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  ( F `  B ) ) )  <  e
) ) )
6231, 61mpd 13 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) )
6311, 38, 36ellimc3ap 14169 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( ( F `  B )  e.  ( F lim CC  B
)  <->  ( ( F `
 B )  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  ( F `
 B ) ) )  <  e ) ) ) )
6413, 62, 63mpbir2and 944 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F `  B )  e.  ( F lim CC  B ) )
6511, 64jca 306 . 2  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F  e.  ( ( J  CnP  K
) `  B )
)  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) )
6665ex 115 1  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   class class class wbr 4005    X. cxp 4626    |` cres 4630    o. ccom 4632   -->wf 5214   ` cfv 5218  (class class class)co 5877   CCcc 7811    < clt 7994    - cmin 8130   # cap 8540   RR+crp 9655   abscabs 11008   ↾t crest 12693   *Metcxmet 13479   MetOpencmopn 13484  TopOnctopon 13549    CnP ccnp 13725   lim CC climc 14162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-pm 6653  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-rest 12695  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-cnp 13728  df-limced 14164
This theorem is referenced by:  cnplimccntop  14178  cnlimcim  14179
  Copyright terms: Public domain W3C validator