ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abstri Unicode version

Theorem abstri 10844
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )

Proof of Theorem abstri
StepHypRef Expression
1 2re 8758 . . . . . 6  |-  2  e.  RR
21a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR )
3 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 simpr 109 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54cjcld 10680 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
63, 5mulcld 7754 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
76recld 10678 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  e.  RR )
82, 7remulcld 7764 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  e.  RR )
9 abscl 10791 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
103, 9syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
11 abscl 10791 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
124, 11syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
1310, 12remulcld 7764 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  B ) )  e.  RR )
142, 13remulcld 7764 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  RR )
1510resqcld 10418 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  RR )
1612resqcld 10418 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  RR )
1715, 16readdcld 7763 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  RR )
18 releabs 10836 . . . . . . 7  |-  ( ( A  x.  ( * `
 B ) )  e.  CC  ->  (
Re `  ( A  x.  ( * `  B
) ) )  <_ 
( abs `  ( A  x.  ( * `  B ) ) ) )
196, 18syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( abs `  ( A  x.  ( * `  B ) ) ) )
20 absmul 10809 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
213, 5, 20syl2anc 408 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
22 abscj 10792 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( * `  B ) )  =  ( abs `  B
) )
234, 22syl 14 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
* `  B )
)  =  ( abs `  B ) )
2423oveq2d 5758 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  ( * `  B
) ) )  =  ( ( abs `  A
)  x.  ( abs `  B ) ) )
2521, 24eqtrd 2150 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
2619, 25breqtrd 3924 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( ( abs `  A )  x.  ( abs `  B ) ) )
27 2rp 9414 . . . . . . 7  |-  2  e.  RR+
2827a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR+ )
297, 13, 28lemul2d 9496 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  (
* `  B )
) )  <_  (
( abs `  A
)  x.  ( abs `  B ) )  <->  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) )  <_ 
( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) ) )
3026, 29mpbid 146 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  <_  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )
318, 14, 17, 30leadd2dd 8290 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  <_  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
32 sqabsadd 10795 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
3310recnd 7762 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  CC )
3412recnd 7762 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  CC )
35 binom2 10371 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  -> 
( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3633, 34, 35syl2anc 408 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3715recnd 7762 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  CC )
3814recnd 7762 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  CC )
3916recnd 7762 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  CC )
4037, 38, 39add32d 7898 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4136, 40eqtrd 2150 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4231, 32, 413brtr4d 3930 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  <_  ( ( ( abs `  A )  +  ( abs `  B
) ) ^ 2 ) )
43 addcl 7713 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
44 abscl 10791 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  ( abs `  ( A  +  B ) )  e.  RR )
4543, 44syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  e.  RR )
4610, 12readdcld 7763 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  +  ( abs `  B ) )  e.  RR )
47 absge0 10800 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  0  <_  ( abs `  ( A  +  B )
) )
4843, 47syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  ( A  +  B
) ) )
49 absge0 10800 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
503, 49syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
51 absge0 10800 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
524, 51syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
5310, 12, 50, 52addge0d 8252 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
5445, 46, 48, 53le2sqd 10424 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) )  <->  ( ( abs `  ( A  +  B ) ) ^
2 )  <_  (
( ( abs `  A
)  +  ( abs `  B ) ) ^
2 ) ) )
5542, 54mpbird 166 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588    + caddc 7591    x. cmul 7593    <_ cle 7769   2c2 8739   RR+crp 9409   ^cexp 10260   *ccj 10579   Recre 10580   abscabs 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739
This theorem is referenced by:  abs3dif  10845  abs2dif2  10847  abstrii  10895  abstrid  10936
  Copyright terms: Public domain W3C validator