ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abstri Unicode version

Theorem abstri 10600
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )

Proof of Theorem abstri
StepHypRef Expression
1 2re 8555 . . . . . 6  |-  2  e.  RR
21a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR )
3 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 simpr 109 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54cjcld 10437 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
63, 5mulcld 7571 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
76recld 10435 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  e.  RR )
82, 7remulcld 7581 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  e.  RR )
9 abscl 10547 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
103, 9syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
11 abscl 10547 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
124, 11syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
1310, 12remulcld 7581 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  B ) )  e.  RR )
142, 13remulcld 7581 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  RR )
1510resqcld 10175 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  RR )
1612resqcld 10175 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  RR )
1715, 16readdcld 7580 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  RR )
18 releabs 10592 . . . . . . 7  |-  ( ( A  x.  ( * `
 B ) )  e.  CC  ->  (
Re `  ( A  x.  ( * `  B
) ) )  <_ 
( abs `  ( A  x.  ( * `  B ) ) ) )
196, 18syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( abs `  ( A  x.  ( * `  B ) ) ) )
20 absmul 10565 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
213, 5, 20syl2anc 404 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
22 abscj 10548 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( * `  B ) )  =  ( abs `  B
) )
234, 22syl 14 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
* `  B )
)  =  ( abs `  B ) )
2423oveq2d 5684 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  ( * `  B
) ) )  =  ( ( abs `  A
)  x.  ( abs `  B ) ) )
2521, 24eqtrd 2121 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
2619, 25breqtrd 3877 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( ( abs `  A )  x.  ( abs `  B ) ) )
27 2rp 9202 . . . . . . 7  |-  2  e.  RR+
2827a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR+ )
297, 13, 28lemul2d 9281 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  (
* `  B )
) )  <_  (
( abs `  A
)  x.  ( abs `  B ) )  <->  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) )  <_ 
( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) ) )
3026, 29mpbid 146 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  <_  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )
318, 14, 17, 30leadd2dd 8100 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  <_  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
32 sqabsadd 10551 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
3310recnd 7579 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  CC )
3412recnd 7579 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  CC )
35 binom2 10128 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  -> 
( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3633, 34, 35syl2anc 404 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3715recnd 7579 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  CC )
3814recnd 7579 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  CC )
3916recnd 7579 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  CC )
4037, 38, 39add32d 7713 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4136, 40eqtrd 2121 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4231, 32, 413brtr4d 3883 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  <_  ( ( ( abs `  A )  +  ( abs `  B
) ) ^ 2 ) )
43 addcl 7530 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
44 abscl 10547 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  ( abs `  ( A  +  B ) )  e.  RR )
4543, 44syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  e.  RR )
4610, 12readdcld 7580 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  +  ( abs `  B ) )  e.  RR )
47 absge0 10556 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  0  <_  ( abs `  ( A  +  B )
) )
4843, 47syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  ( A  +  B
) ) )
49 absge0 10556 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
503, 49syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
51 absge0 10556 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
524, 51syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
5310, 12, 50, 52addge0d 8062 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
5445, 46, 48, 53le2sqd 10181 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) )  <->  ( ( abs `  ( A  +  B ) ) ^
2 )  <_  (
( ( abs `  A
)  +  ( abs `  B ) ) ^
2 ) ) )
5542, 54mpbird 166 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   class class class wbr 3853   ` cfv 5030  (class class class)co 5668   CCcc 7411   RRcr 7412   0cc0 7413    + caddc 7416    x. cmul 7418    <_ cle 7586   2c2 8536   RR+crp 9197   ^cexp 10017   *ccj 10336   Recre 10337   abscabs 10493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526  ax-arch 7527  ax-caucvg 7528
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-frec 6172  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-inn 8486  df-2 8544  df-3 8545  df-4 8546  df-n0 8737  df-z 8814  df-uz 9083  df-rp 9198  df-iseq 9916  df-seq3 9917  df-exp 10018  df-cj 10339  df-re 10340  df-im 10341  df-rsqrt 10494  df-abs 10495
This theorem is referenced by:  abs3dif  10601  abs2dif2  10603  abstrii  10651  abstrid  10692
  Copyright terms: Public domain W3C validator