ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opoe Unicode version

Theorem opoe 12321
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )

Proof of Theorem opoe
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 12299 . . . . 5  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 odd2np1 12299 . . . . 5  |-  ( B  e.  ZZ  ->  ( -.  2  ||  B  <->  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
31, 2bi2anan9 606 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B ) ) )
4 reeanv 2678 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
5 2z 9435 . . . . . . . . 9  |-  2  e.  ZZ
6 zaddcl 9447 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
76peano2zd 9533 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( a  +  b )  +  1 )  e.  ZZ )
8 dvdsmul1 12239 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( ( a  +  b )  +  1 )  e.  ZZ )  ->  2  ||  (
2  x.  ( ( a  +  b )  +  1 ) ) )
95, 7, 8sylancr 414 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( 2  x.  ( ( a  +  b )  +  1 ) ) )
10 zcn 9412 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  CC )
11 zcn 9412 . . . . . . . . 9  |-  ( b  e.  ZZ  ->  b  e.  CC )
12 addcl 8085 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  b )  e.  CC )
13 2cn 9142 . . . . . . . . . . . . . 14  |-  2  e.  CC
14 ax-1cn 8053 . . . . . . . . . . . . . 14  |-  1  e.  CC
15 adddi 8092 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( a  +  b )  e.  CC  /\  1  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
1613, 14, 15mp3an13 1341 . . . . . . . . . . . . 13  |-  ( ( a  +  b )  e.  CC  ->  (
2  x.  ( ( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
1712, 16syl 14 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
18 adddi 8092 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b
) ) )
1913, 18mp3an1 1337 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b ) ) )
2019oveq1d 5982 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) ) )
2117, 20eqtrd 2240 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) ) )
22 2t1e2 9225 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
23 df-2 9130 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
2422, 23eqtri 2228 . . . . . . . . . . . 12  |-  ( 2  x.  1 )  =  ( 1  +  1 )
2524oveq2i 5978 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) )  =  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )
2621, 25eqtrdi 2256 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 1  +  1 ) ) )
27 mulcl 8087 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
2813, 27mpan 424 . . . . . . . . . . 11  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
29 mulcl 8087 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
3013, 29mpan 424 . . . . . . . . . . 11  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
31 add4 8268 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  a )  e.  CC  /\  ( 2  x.  b
)  e.  CC )  /\  ( 1  e.  CC  /\  1  e.  CC ) )  -> 
( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3214, 14, 31mpanr12 439 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b ) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3328, 30, 32syl2an 289 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3426, 33eqtrd 2240 . . . . . . . . 9  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3510, 11, 34syl2an 289 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
369, 35breqtrd 4085 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
37 oveq12 5976 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b )  +  1 ) )  =  ( A  +  B ) )
3837breq2d 4071 . . . . . . 7  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( 2  ||  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b
)  +  1 ) )  <->  2  ||  ( A  +  B )
) )
3936, 38syl5ibcom 155 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  +  B
) ) )
4039rexlimivv 2631 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  +  B )
)
414, 40sylbir 135 . . . 4  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B )  -> 
2  ||  ( A  +  B ) )
423, 41biimtrdi 163 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  ->  2  ||  ( A  +  B
) ) )
4342imp 124 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )
4443an4s 588 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965   2c2 9122   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-dvds 12214
This theorem is referenced by:  pythagtriplem11  12712
  Copyright terms: Public domain W3C validator