Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opoe | Unicode version |
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
opoe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 11806 | . . . . 5 | |
2 | odd2np1 11806 | . . . . 5 | |
3 | 1, 2 | bi2anan9 596 | . . . 4 |
4 | reeanv 2634 | . . . . 5 | |
5 | 2z 9215 | . . . . . . . . 9 | |
6 | zaddcl 9227 | . . . . . . . . . 10 | |
7 | 6 | peano2zd 9312 | . . . . . . . . 9 |
8 | dvdsmul1 11749 | . . . . . . . . 9 | |
9 | 5, 7, 8 | sylancr 411 | . . . . . . . 8 |
10 | zcn 9192 | . . . . . . . . 9 | |
11 | zcn 9192 | . . . . . . . . 9 | |
12 | addcl 7874 | . . . . . . . . . . . . 13 | |
13 | 2cn 8924 | . . . . . . . . . . . . . 14 | |
14 | ax-1cn 7842 | . . . . . . . . . . . . . 14 | |
15 | adddi 7881 | . . . . . . . . . . . . . 14 | |
16 | 13, 14, 15 | mp3an13 1318 | . . . . . . . . . . . . 13 |
17 | 12, 16 | syl 14 | . . . . . . . . . . . 12 |
18 | adddi 7881 | . . . . . . . . . . . . . 14 | |
19 | 13, 18 | mp3an1 1314 | . . . . . . . . . . . . 13 |
20 | 19 | oveq1d 5856 | . . . . . . . . . . . 12 |
21 | 17, 20 | eqtrd 2198 | . . . . . . . . . . 11 |
22 | 2t1e2 9006 | . . . . . . . . . . . . 13 | |
23 | df-2 8912 | . . . . . . . . . . . . 13 | |
24 | 22, 23 | eqtri 2186 | . . . . . . . . . . . 12 |
25 | 24 | oveq2i 5852 | . . . . . . . . . . 11 |
26 | 21, 25 | eqtrdi 2214 | . . . . . . . . . 10 |
27 | mulcl 7876 | . . . . . . . . . . . 12 | |
28 | 13, 27 | mpan 421 | . . . . . . . . . . 11 |
29 | mulcl 7876 | . . . . . . . . . . . 12 | |
30 | 13, 29 | mpan 421 | . . . . . . . . . . 11 |
31 | add4 8055 | . . . . . . . . . . . 12 | |
32 | 14, 14, 31 | mpanr12 436 | . . . . . . . . . . 11 |
33 | 28, 30, 32 | syl2an 287 | . . . . . . . . . 10 |
34 | 26, 33 | eqtrd 2198 | . . . . . . . . 9 |
35 | 10, 11, 34 | syl2an 287 | . . . . . . . 8 |
36 | 9, 35 | breqtrd 4007 | . . . . . . 7 |
37 | oveq12 5850 | . . . . . . . 8 | |
38 | 37 | breq2d 3993 | . . . . . . 7 |
39 | 36, 38 | syl5ibcom 154 | . . . . . 6 |
40 | 39 | rexlimivv 2588 | . . . . 5 |
41 | 4, 40 | sylbir 134 | . . . 4 |
42 | 3, 41 | syl6bi 162 | . . 3 |
43 | 42 | imp 123 | . 2 |
44 | 43 | an4s 578 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wcel 2136 wrex 2444 class class class wbr 3981 (class class class)co 5841 cc 7747 c1 7750 caddc 7752 cmul 7754 c2 8904 cz 9187 cdvds 11723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-n0 9111 df-z 9188 df-dvds 11724 |
This theorem is referenced by: pythagtriplem11 12202 |
Copyright terms: Public domain | W3C validator |