ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul1c Unicode version

Theorem nummul1c 9391
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul1c.8  |-  ( ( A  x.  P )  +  E )  =  C
nummul1c.9  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul1c  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 9355 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2243 . . 3  |-  N  e. 
NN0
7 nummul1c.2 . . 3  |-  P  e. 
NN0
86, 7num0u 9353 . 2  |-  ( N  x.  P )  =  ( ( N  x.  P )  +  0 )
9 0nn0 9150 . . 3  |-  0  e.  NN0
102, 9num0h 9354 . . 3  |-  0  =  ( ( T  x.  0 )  +  0 )
11 nummul1c.6 . . 3  |-  D  e. 
NN0
12 nummul1c.7 . . 3  |-  E  e. 
NN0
1312nn0cni 9147 . . . . . 6  |-  E  e.  CC
1413addid2i 8062 . . . . 5  |-  ( 0  +  E )  =  E
1514oveq2i 5864 . . . 4  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  ( ( A  x.  P )  +  E
)
16 nummul1c.8 . . . 4  |-  ( ( A  x.  P )  +  E )  =  C
1715, 16eqtri 2191 . . 3  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  C
184, 7num0u 9353 . . . 4  |-  ( B  x.  P )  =  ( ( B  x.  P )  +  0 )
19 nummul1c.9 . . . 4  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
2018, 19eqtr3i 2193 . . 3  |-  ( ( B  x.  P )  +  0 )  =  ( ( T  x.  E )  +  D
)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 9387 . 2  |-  ( ( N  x.  P )  +  0 )  =  ( ( T  x.  C )  +  D
)
228, 21eqtri 2191 1  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141  (class class class)co 5853   0cc0 7774    + caddc 7777    x. cmul 7779   NN0cn0 9135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-inn 8879  df-n0 9136
This theorem is referenced by:  nummul2c  9392  decmul1  9406  decmul1c  9407
  Copyright terms: Public domain W3C validator