ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul1c Unicode version

Theorem nummul1c 9552
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul1c.8  |-  ( ( A  x.  P )  +  E )  =  C
nummul1c.9  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul1c  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 9516 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2278 . . 3  |-  N  e. 
NN0
7 nummul1c.2 . . 3  |-  P  e. 
NN0
86, 7num0u 9514 . 2  |-  ( N  x.  P )  =  ( ( N  x.  P )  +  0 )
9 0nn0 9310 . . 3  |-  0  e.  NN0
102, 9num0h 9515 . . 3  |-  0  =  ( ( T  x.  0 )  +  0 )
11 nummul1c.6 . . 3  |-  D  e. 
NN0
12 nummul1c.7 . . 3  |-  E  e. 
NN0
1312nn0cni 9307 . . . . . 6  |-  E  e.  CC
1413addlidi 8215 . . . . 5  |-  ( 0  +  E )  =  E
1514oveq2i 5955 . . . 4  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  ( ( A  x.  P )  +  E
)
16 nummul1c.8 . . . 4  |-  ( ( A  x.  P )  +  E )  =  C
1715, 16eqtri 2226 . . 3  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  C
184, 7num0u 9514 . . . 4  |-  ( B  x.  P )  =  ( ( B  x.  P )  +  0 )
19 nummul1c.9 . . . 4  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
2018, 19eqtr3i 2228 . . 3  |-  ( ( B  x.  P )  +  0 )  =  ( ( T  x.  E )  +  D
)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 9548 . 2  |-  ( ( N  x.  P )  +  0 )  =  ( ( T  x.  C )  +  D
)
228, 21eqtri 2226 1  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176  (class class class)co 5944   0cc0 7925    + caddc 7928    x. cmul 7930   NN0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-inn 9037  df-n0 9296
This theorem is referenced by:  nummul2c  9553  decmul1  9567  decmul1c  9568
  Copyright terms: Public domain W3C validator