ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul1c Unicode version

Theorem nummul1c 9384
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul1c.8  |-  ( ( A  x.  P )  +  E )  =  C
nummul1c.9  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul1c  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 9348 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2243 . . 3  |-  N  e. 
NN0
7 nummul1c.2 . . 3  |-  P  e. 
NN0
86, 7num0u 9346 . 2  |-  ( N  x.  P )  =  ( ( N  x.  P )  +  0 )
9 0nn0 9143 . . 3  |-  0  e.  NN0
102, 9num0h 9347 . . 3  |-  0  =  ( ( T  x.  0 )  +  0 )
11 nummul1c.6 . . 3  |-  D  e. 
NN0
12 nummul1c.7 . . 3  |-  E  e. 
NN0
1312nn0cni 9140 . . . . . 6  |-  E  e.  CC
1413addid2i 8055 . . . . 5  |-  ( 0  +  E )  =  E
1514oveq2i 5862 . . . 4  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  ( ( A  x.  P )  +  E
)
16 nummul1c.8 . . . 4  |-  ( ( A  x.  P )  +  E )  =  C
1715, 16eqtri 2191 . . 3  |-  ( ( A  x.  P )  +  ( 0  +  E ) )  =  C
184, 7num0u 9346 . . . 4  |-  ( B  x.  P )  =  ( ( B  x.  P )  +  0 )
19 nummul1c.9 . . . 4  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
2018, 19eqtr3i 2193 . . 3  |-  ( ( B  x.  P )  +  0 )  =  ( ( T  x.  E )  +  D
)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 9380 . 2  |-  ( ( N  x.  P )  +  0 )  =  ( ( T  x.  C )  +  D
)
228, 21eqtri 2191 1  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141  (class class class)co 5851   0cc0 7767    + caddc 7770    x. cmul 7772   NN0cn0 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-sub 8085  df-inn 8872  df-n0 9129
This theorem is referenced by:  nummul2c  9385  decmul1  9399  decmul1c  9400
  Copyright terms: Public domain W3C validator