ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmac Unicode version

Theorem decrmac 9596
Description: Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (with carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a  |-  A  e. 
NN0
decrmanc.b  |-  B  e. 
NN0
decrmanc.n  |-  N  e. 
NN0
decrmanc.m  |-  M  = ; A B
decrmanc.p  |-  P  e. 
NN0
decrmac.f  |-  F  e. 
NN0
decrmac.g  |-  G  e. 
NN0
decrmac.e  |-  ( ( A  x.  P )  +  G )  =  E
decrmac.2  |-  ( ( B  x.  P )  +  N )  = ; G F
Assertion
Ref Expression
decrmac  |-  ( ( M  x.  P )  +  N )  = ; E F

Proof of Theorem decrmac
StepHypRef Expression
1 decrmanc.a . 2  |-  A  e. 
NN0
2 decrmanc.b . 2  |-  B  e. 
NN0
3 0nn0 9345 . 2  |-  0  e.  NN0
4 decrmanc.n . 2  |-  N  e. 
NN0
5 decrmanc.m . 2  |-  M  = ; A B
64dec0h 9560 . 2  |-  N  = ; 0 N
7 decrmanc.p . 2  |-  P  e. 
NN0
8 decrmac.f . 2  |-  F  e. 
NN0
9 decrmac.g . 2  |-  G  e. 
NN0
109nn0cni 9342 . . . . 5  |-  G  e.  CC
1110addlidi 8250 . . . 4  |-  ( 0  +  G )  =  G
1211oveq2i 5978 . . 3  |-  ( ( A  x.  P )  +  ( 0  +  G ) )  =  ( ( A  x.  P )  +  G
)
13 decrmac.e . . 3  |-  ( ( A  x.  P )  +  G )  =  E
1412, 13eqtri 2228 . 2  |-  ( ( A  x.  P )  +  ( 0  +  G ) )  =  E
15 decrmac.2 . 2  |-  ( ( B  x.  P )  +  N )  = ; G F
161, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15decmac 9590 1  |-  ( ( M  x.  P )  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   0cc0 7960    + caddc 7963    x. cmul 7965   NN0cn0 9330  ;cdc 9539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-dec 9540
This theorem is referenced by:  2exp16  12875
  Copyright terms: Public domain W3C validator