ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmac Unicode version

Theorem decrmac 9635
Description: Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (with carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a  |-  A  e. 
NN0
decrmanc.b  |-  B  e. 
NN0
decrmanc.n  |-  N  e. 
NN0
decrmanc.m  |-  M  = ; A B
decrmanc.p  |-  P  e. 
NN0
decrmac.f  |-  F  e. 
NN0
decrmac.g  |-  G  e. 
NN0
decrmac.e  |-  ( ( A  x.  P )  +  G )  =  E
decrmac.2  |-  ( ( B  x.  P )  +  N )  = ; G F
Assertion
Ref Expression
decrmac  |-  ( ( M  x.  P )  +  N )  = ; E F

Proof of Theorem decrmac
StepHypRef Expression
1 decrmanc.a . 2  |-  A  e. 
NN0
2 decrmanc.b . 2  |-  B  e. 
NN0
3 0nn0 9384 . 2  |-  0  e.  NN0
4 decrmanc.n . 2  |-  N  e. 
NN0
5 decrmanc.m . 2  |-  M  = ; A B
64dec0h 9599 . 2  |-  N  = ; 0 N
7 decrmanc.p . 2  |-  P  e. 
NN0
8 decrmac.f . 2  |-  F  e. 
NN0
9 decrmac.g . 2  |-  G  e. 
NN0
109nn0cni 9381 . . . . 5  |-  G  e.  CC
1110addlidi 8289 . . . 4  |-  ( 0  +  G )  =  G
1211oveq2i 6012 . . 3  |-  ( ( A  x.  P )  +  ( 0  +  G ) )  =  ( ( A  x.  P )  +  G
)
13 decrmac.e . . 3  |-  ( ( A  x.  P )  +  G )  =  E
1412, 13eqtri 2250 . 2  |-  ( ( A  x.  P )  +  ( 0  +  G ) )  =  E
15 decrmac.2 . 2  |-  ( ( B  x.  P )  +  N )  = ; G F
161, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15decmac 9629 1  |-  ( ( M  x.  P )  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6001   0cc0 7999    + caddc 8002    x. cmul 8004   NN0cn0 9369  ;cdc 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579
This theorem is referenced by:  2exp16  12960
  Copyright terms: Public domain W3C validator