ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncrng Unicode version

Theorem cncrng 14057
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng  |-fld  e.  CRing

Proof of Theorem cncrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 14051 . . . 4  |-  CC  =  ( Base ` fld )
21a1i 9 . . 3  |-  ( T. 
->  CC  =  ( Base ` fld ) )
3 cnfldadd 14052 . . . 4  |-  +  =  ( +g  ` fld )
43a1i 9 . . 3  |-  ( T. 
->  +  =  ( +g  ` fld ) )
5 cnfldmul 14054 . . . 4  |-  x.  =  ( .r ` fld )
65a1i 9 . . 3  |-  ( T. 
->  x.  =  ( .r
` fld
) )
7 addcl 7997 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
8 addass 8002 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
9 0cn 8011 . . . . 5  |-  0  e.  CC
10 addlid 8158 . . . . 5  |-  ( x  e.  CC  ->  (
0  +  x )  =  x )
11 negcl 8219 . . . . 5  |-  ( x  e.  CC  ->  -u x  e.  CC )
12 addcom 8156 . . . . . . 7  |-  ( (
-u x  e.  CC  /\  x  e.  CC )  ->  ( -u x  +  x )  =  ( x  +  -u x
) )
1311, 12mpancom 422 . . . . . 6  |-  ( x  e.  CC  ->  ( -u x  +  x )  =  ( x  +  -u x ) )
14 negid 8266 . . . . . 6  |-  ( x  e.  CC  ->  (
x  +  -u x
)  =  0 )
1513, 14eqtrd 2226 . . . . 5  |-  ( x  e.  CC  ->  ( -u x  +  x )  =  0 )
161, 3, 7, 8, 9, 10, 11, 15isgrpi 13096 . . . 4  |-fld  e.  Grp
1716a1i 9 . . 3  |-  ( T. 
->fld  e. 
Grp )
18 mulcl 7999 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
19183adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  CC  /\  y  e.  CC )  ->  (
x  x.  y )  e.  CC )
20 mulass 8003 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
2120adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
22 adddi 8004 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
2322adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) ) )
24 adddir 8010 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
2524adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
26 1cnd 8035 . . 3  |-  ( T. 
->  1  e.  CC )
27 mullid 8017 . . . 4  |-  ( x  e.  CC  ->  (
1  x.  x )  =  x )
2827adantl 277 . . 3  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  x.  x )  =  x )
29 mulrid 8016 . . . 4  |-  ( x  e.  CC  ->  (
x  x.  1 )  =  x )
3029adantl 277 . . 3  |-  ( ( T.  /\  x  e.  CC )  ->  (
x  x.  1 )  =  x )
31 mulcom 8001 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
32313adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  CC  /\  y  e.  CC )  ->  (
x  x.  y )  =  ( y  x.  x ) )
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 13538 . 2  |-  ( T. 
->fld  e. 
CRing )
3433mptru 1373 1  |-fld  e.  CRing
Colors of variables: wff set class
Syntax hints:    /\ w3a 980    = wceq 1364   T. wtru 1365    e. wcel 2164   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877   -ucneg 8191   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072   CRingccrg 13493  ℂfldccnfld 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-cmn 13356  df-mgp 13417  df-ring 13494  df-cring 13495  df-icnfld 14048
This theorem is referenced by:  cnring  14058  cnfldui  14077  zringcrng  14080  zring0  14088
  Copyright terms: Public domain W3C validator