ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncrng Unicode version

Theorem cncrng 14201
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng  |-fld  e.  CRing

Proof of Theorem cncrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 14192 . . . 4  |-  CC  =  ( Base ` fld )
21a1i 9 . . 3  |-  ( T. 
->  CC  =  ( Base ` fld ) )
3 cnfldadd 14194 . . . 4  |-  +  =  ( +g  ` fld )
43a1i 9 . . 3  |-  ( T. 
->  +  =  ( +g  ` fld ) )
5 cnfldmul 14196 . . . 4  |-  x.  =  ( .r ` fld )
65a1i 9 . . 3  |-  ( T. 
->  x.  =  ( .r
` fld
) )
7 addcl 8021 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
8 addass 8026 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
9 0cn 8035 . . . . 5  |-  0  e.  CC
10 addlid 8182 . . . . 5  |-  ( x  e.  CC  ->  (
0  +  x )  =  x )
11 negcl 8243 . . . . 5  |-  ( x  e.  CC  ->  -u x  e.  CC )
12 addcom 8180 . . . . . . 7  |-  ( (
-u x  e.  CC  /\  x  e.  CC )  ->  ( -u x  +  x )  =  ( x  +  -u x
) )
1311, 12mpancom 422 . . . . . 6  |-  ( x  e.  CC  ->  ( -u x  +  x )  =  ( x  +  -u x ) )
14 negid 8290 . . . . . 6  |-  ( x  e.  CC  ->  (
x  +  -u x
)  =  0 )
1513, 14eqtrd 2229 . . . . 5  |-  ( x  e.  CC  ->  ( -u x  +  x )  =  0 )
161, 3, 7, 8, 9, 10, 11, 15isgrpi 13226 . . . 4  |-fld  e.  Grp
1716a1i 9 . . 3  |-  ( T. 
->fld  e. 
Grp )
18 mulcl 8023 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
19183adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  CC  /\  y  e.  CC )  ->  (
x  x.  y )  e.  CC )
20 mulass 8027 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
2120adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
22 adddi 8028 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
2322adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) ) )
24 adddir 8034 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
2524adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
26 1cnd 8059 . . 3  |-  ( T. 
->  1  e.  CC )
27 mullid 8041 . . . 4  |-  ( x  e.  CC  ->  (
1  x.  x )  =  x )
2827adantl 277 . . 3  |-  ( ( T.  /\  x  e.  CC )  ->  (
1  x.  x )  =  x )
29 mulrid 8040 . . . 4  |-  ( x  e.  CC  ->  (
x  x.  1 )  =  x )
3029adantl 277 . . 3  |-  ( ( T.  /\  x  e.  CC )  ->  (
x  x.  1 )  =  x )
31 mulcom 8025 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
32313adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  CC  /\  y  e.  CC )  ->  (
x  x.  y )  =  ( y  x.  x ) )
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 13674 . 2  |-  ( T. 
->fld  e. 
CRing )
3433mptru 1373 1  |-fld  e.  CRing
Colors of variables: wff set class
Syntax hints:    /\ w3a 980    = wceq 1364   T. wtru 1365    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   -ucneg 8215   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Grpcgrp 13202   CRingccrg 13629  ℂfldccnfld 14188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-cmn 13492  df-mgp 13553  df-ring 13630  df-cring 13631  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189
This theorem is referenced by:  cnring  14202  cnfldui  14221  zringcrng  14224  zring0  14232
  Copyright terms: Public domain W3C validator