| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqger | Unicode version | ||
| Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| Ref | Expression |
|---|---|
| eqger |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 13486 |
. . 3
| |
| 2 | eqger.r |
. . . 4
| |
| 3 | 2 | releqgg 13527 |
. . 3
|
| 4 | 1, 3 | mpancom 422 |
. 2
|
| 5 | eqger.x |
. . . . . . 7
| |
| 6 | 5 | subgss 13481 |
. . . . . 6
|
| 7 | eqid 2204 |
. . . . . . 7
| |
| 8 | eqid 2204 |
. . . . . . 7
| |
| 9 | 5, 7, 8, 2 | eqgval 13530 |
. . . . . 6
|
| 10 | 1, 6, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | biimpa 296 |
. . . 4
|
| 12 | 11 | simp2d 1012 |
. . 3
|
| 13 | 11 | simp1d 1011 |
. . 3
|
| 14 | 1 | adantr 276 |
. . . . . 6
|
| 15 | 5, 7 | grpinvcl 13351 |
. . . . . . 7
|
| 16 | 14, 13, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 5, 8, 7 | grpinvadd 13381 |
. . . . . 6
|
| 18 | 14, 16, 12, 17 | syl3anc 1249 |
. . . . 5
|
| 19 | 5, 7 | grpinvinv 13370 |
. . . . . . 7
|
| 20 | 14, 13, 19 | syl2anc 411 |
. . . . . 6
|
| 21 | 20 | oveq2d 5959 |
. . . . 5
|
| 22 | 18, 21 | eqtrd 2237 |
. . . 4
|
| 23 | 11 | simp3d 1013 |
. . . . 5
|
| 24 | 7 | subginvcl 13490 |
. . . . 5
|
| 25 | 23, 24 | syldan 282 |
. . . 4
|
| 26 | 22, 25 | eqeltrrd 2282 |
. . 3
|
| 27 | 6 | adantr 276 |
. . . 4
|
| 28 | 5, 7, 8, 2 | eqgval 13530 |
. . . 4
|
| 29 | 14, 27, 28 | syl2anc 411 |
. . 3
|
| 30 | 12, 13, 26, 29 | mpbir3and 1182 |
. 2
|
| 31 | 13 | adantrr 479 |
. . 3
|
| 32 | 5, 7, 8, 2 | eqgval 13530 |
. . . . . . 7
|
| 33 | 1, 6, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | biimpa 296 |
. . . . 5
|
| 35 | 34 | adantrl 478 |
. . . 4
|
| 36 | 35 | simp2d 1012 |
. . 3
|
| 37 | 1 | adantr 276 |
. . . . . 6
|
| 38 | 37, 31, 15 | syl2anc 411 |
. . . . . 6
|
| 39 | 12 | adantrr 479 |
. . . . . 6
|
| 40 | 5, 7 | grpinvcl 13351 |
. . . . . . . 8
|
| 41 | 37, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 5, 8, 37, 41, 36 | grpcld 13317 |
. . . . . 6
|
| 43 | 5, 8 | grpass 13312 |
. . . . . 6
|
| 44 | 37, 38, 39, 42, 43 | syl13anc 1251 |
. . . . 5
|
| 45 | eqid 2204 |
. . . . . . . . . 10
| |
| 46 | 5, 8, 45, 7 | grprinv 13354 |
. . . . . . . . 9
|
| 47 | 37, 39, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 47 | oveq1d 5958 |
. . . . . . 7
|
| 49 | 5, 8 | grpass 13312 |
. . . . . . . 8
|
| 50 | 37, 39, 41, 36, 49 | syl13anc 1251 |
. . . . . . 7
|
| 51 | 5, 8, 45 | grplid 13334 |
. . . . . . . 8
|
| 52 | 37, 36, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 48, 50, 52 | 3eqtr3d 2245 |
. . . . . 6
|
| 54 | 53 | oveq2d 5959 |
. . . . 5
|
| 55 | 44, 54 | eqtrd 2237 |
. . . 4
|
| 56 | simpl 109 |
. . . . 5
| |
| 57 | 23 | adantrr 479 |
. . . . 5
|
| 58 | 35 | simp3d 1013 |
. . . . 5
|
| 59 | 8 | subgcl 13491 |
. . . . 5
|
| 60 | 56, 57, 58, 59 | syl3anc 1249 |
. . . 4
|
| 61 | 55, 60 | eqeltrrd 2282 |
. . 3
|
| 62 | 6 | adantr 276 |
. . . 4
|
| 63 | 5, 7, 8, 2 | eqgval 13530 |
. . . 4
|
| 64 | 37, 62, 63 | syl2anc 411 |
. . 3
|
| 65 | 31, 36, 61, 64 | mpbir3and 1182 |
. 2
|
| 66 | 5, 8, 45, 7 | grplinv 13353 |
. . . . . . 7
|
| 67 | 1, 66 | sylan 283 |
. . . . . 6
|
| 68 | 45 | subg0cl 13489 |
. . . . . . 7
|
| 69 | 68 | adantr 276 |
. . . . . 6
|
| 70 | 67, 69 | eqeltrd 2281 |
. . . . 5
|
| 71 | 70 | ex 115 |
. . . 4
|
| 72 | 71 | pm4.71rd 394 |
. . 3
|
| 73 | 5, 7, 8, 2 | eqgval 13530 |
. . . . 5
|
| 74 | 1, 6, 73 | syl2anc 411 |
. . . 4
|
| 75 | df-3an 982 |
. . . . 5
| |
| 76 | anidm 396 |
. . . . . 6
| |
| 77 | 76 | anbi2ci 459 |
. . . . 5
|
| 78 | 75, 77 | bitri 184 |
. . . 4
|
| 79 | 74, 78 | bitrdi 196 |
. . 3
|
| 80 | 72, 79 | bitr4d 191 |
. 2
|
| 81 | 4, 30, 65, 80 | iserd 6645 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-er 6619 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-subg 13477 df-eqg 13479 |
| This theorem is referenced by: eqgen 13534 eqg0el 13536 qusgrp 13539 qusadd 13541 qusecsub 13638 2idlcpblrng 14256 qus2idrng 14258 qus1 14259 qusrhm 14261 qusmul2 14262 qusmulrng 14265 zndvds 14382 |
| Copyright terms: Public domain | W3C validator |