| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqger | Unicode version | ||
| Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| Ref | Expression |
|---|---|
| eqger |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 13600 |
. . 3
| |
| 2 | eqger.r |
. . . 4
| |
| 3 | 2 | releqgg 13641 |
. . 3
|
| 4 | 1, 3 | mpancom 422 |
. 2
|
| 5 | eqger.x |
. . . . . . 7
| |
| 6 | 5 | subgss 13595 |
. . . . . 6
|
| 7 | eqid 2206 |
. . . . . . 7
| |
| 8 | eqid 2206 |
. . . . . . 7
| |
| 9 | 5, 7, 8, 2 | eqgval 13644 |
. . . . . 6
|
| 10 | 1, 6, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | biimpa 296 |
. . . 4
|
| 12 | 11 | simp2d 1013 |
. . 3
|
| 13 | 11 | simp1d 1012 |
. . 3
|
| 14 | 1 | adantr 276 |
. . . . . 6
|
| 15 | 5, 7 | grpinvcl 13465 |
. . . . . . 7
|
| 16 | 14, 13, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 5, 8, 7 | grpinvadd 13495 |
. . . . . 6
|
| 18 | 14, 16, 12, 17 | syl3anc 1250 |
. . . . 5
|
| 19 | 5, 7 | grpinvinv 13484 |
. . . . . . 7
|
| 20 | 14, 13, 19 | syl2anc 411 |
. . . . . 6
|
| 21 | 20 | oveq2d 5978 |
. . . . 5
|
| 22 | 18, 21 | eqtrd 2239 |
. . . 4
|
| 23 | 11 | simp3d 1014 |
. . . . 5
|
| 24 | 7 | subginvcl 13604 |
. . . . 5
|
| 25 | 23, 24 | syldan 282 |
. . . 4
|
| 26 | 22, 25 | eqeltrrd 2284 |
. . 3
|
| 27 | 6 | adantr 276 |
. . . 4
|
| 28 | 5, 7, 8, 2 | eqgval 13644 |
. . . 4
|
| 29 | 14, 27, 28 | syl2anc 411 |
. . 3
|
| 30 | 12, 13, 26, 29 | mpbir3and 1183 |
. 2
|
| 31 | 13 | adantrr 479 |
. . 3
|
| 32 | 5, 7, 8, 2 | eqgval 13644 |
. . . . . . 7
|
| 33 | 1, 6, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | biimpa 296 |
. . . . 5
|
| 35 | 34 | adantrl 478 |
. . . 4
|
| 36 | 35 | simp2d 1013 |
. . 3
|
| 37 | 1 | adantr 276 |
. . . . . 6
|
| 38 | 37, 31, 15 | syl2anc 411 |
. . . . . 6
|
| 39 | 12 | adantrr 479 |
. . . . . 6
|
| 40 | 5, 7 | grpinvcl 13465 |
. . . . . . . 8
|
| 41 | 37, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 5, 8, 37, 41, 36 | grpcld 13431 |
. . . . . 6
|
| 43 | 5, 8 | grpass 13426 |
. . . . . 6
|
| 44 | 37, 38, 39, 42, 43 | syl13anc 1252 |
. . . . 5
|
| 45 | eqid 2206 |
. . . . . . . . . 10
| |
| 46 | 5, 8, 45, 7 | grprinv 13468 |
. . . . . . . . 9
|
| 47 | 37, 39, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 47 | oveq1d 5977 |
. . . . . . 7
|
| 49 | 5, 8 | grpass 13426 |
. . . . . . . 8
|
| 50 | 37, 39, 41, 36, 49 | syl13anc 1252 |
. . . . . . 7
|
| 51 | 5, 8, 45 | grplid 13448 |
. . . . . . . 8
|
| 52 | 37, 36, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 48, 50, 52 | 3eqtr3d 2247 |
. . . . . 6
|
| 54 | 53 | oveq2d 5978 |
. . . . 5
|
| 55 | 44, 54 | eqtrd 2239 |
. . . 4
|
| 56 | simpl 109 |
. . . . 5
| |
| 57 | 23 | adantrr 479 |
. . . . 5
|
| 58 | 35 | simp3d 1014 |
. . . . 5
|
| 59 | 8 | subgcl 13605 |
. . . . 5
|
| 60 | 56, 57, 58, 59 | syl3anc 1250 |
. . . 4
|
| 61 | 55, 60 | eqeltrrd 2284 |
. . 3
|
| 62 | 6 | adantr 276 |
. . . 4
|
| 63 | 5, 7, 8, 2 | eqgval 13644 |
. . . 4
|
| 64 | 37, 62, 63 | syl2anc 411 |
. . 3
|
| 65 | 31, 36, 61, 64 | mpbir3and 1183 |
. 2
|
| 66 | 5, 8, 45, 7 | grplinv 13467 |
. . . . . . 7
|
| 67 | 1, 66 | sylan 283 |
. . . . . 6
|
| 68 | 45 | subg0cl 13603 |
. . . . . . 7
|
| 69 | 68 | adantr 276 |
. . . . . 6
|
| 70 | 67, 69 | eqeltrd 2283 |
. . . . 5
|
| 71 | 70 | ex 115 |
. . . 4
|
| 72 | 71 | pm4.71rd 394 |
. . 3
|
| 73 | 5, 7, 8, 2 | eqgval 13644 |
. . . . 5
|
| 74 | 1, 6, 73 | syl2anc 411 |
. . . 4
|
| 75 | df-3an 983 |
. . . . 5
| |
| 76 | anidm 396 |
. . . . . 6
| |
| 77 | 76 | anbi2ci 459 |
. . . . 5
|
| 78 | 75, 77 | bitri 184 |
. . . 4
|
| 79 | 74, 78 | bitrdi 196 |
. . 3
|
| 80 | 72, 79 | bitr4d 191 |
. 2
|
| 81 | 4, 30, 65, 80 | iserd 6664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-er 6638 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-subg 13591 df-eqg 13593 |
| This theorem is referenced by: eqgen 13648 eqg0el 13650 qusgrp 13653 qusadd 13655 qusecsub 13752 2idlcpblrng 14370 qus2idrng 14372 qus1 14373 qusrhm 14375 qusmul2 14376 qusmulrng 14379 zndvds 14496 |
| Copyright terms: Public domain | W3C validator |