ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqger Unicode version

Theorem eqger 13297
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqger  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)

Proof of Theorem eqger
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 13252 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 eqger.r . . . 4  |-  .~  =  ( G ~QG  Y )
32releqgg 13293 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  (SubGrp `  G
) )  ->  Rel  .~  )
41, 3mpancom 422 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
5 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
65subgss 13247 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
7 eqid 2193 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
8 eqid 2193 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
95, 7, 8, 2eqgval 13296 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) ) )
101, 6, 9syl2anc 411 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y ) ) )
1110biimpa 296 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) )
1211simp2d 1012 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  e.  X )
1311simp1d 1011 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  x  e.  X )
141adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  G  e.  Grp )
155, 7grpinvcl 13123 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  x
)  e.  X )
1614, 13, 15syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  x
)  e.  X )
175, 8, 7grpinvadd 13153 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  x
)  e.  X  /\  y  e.  X )  ->  ( ( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
1814, 16, 12, 17syl3anc 1249 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
195, 7grpinvinv 13142 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2014, 13, 19syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2120oveq2d 5935 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) ( ( invg `  G ) `
 ( ( invg `  G ) `
 x ) ) )  =  ( ( ( invg `  G ) `  y
) ( +g  `  G
) x ) )
2218, 21eqtrd 2226 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) x ) )
2311simp3d 1013 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )
247subginvcl 13256 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2523, 24syldan 282 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2622, 25eqeltrrd 2271 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y )
276adantr 276 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  Y  C_  X )
285, 7, 8, 2eqgval 13296 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) x )  e.  Y
) ) )
2914, 27, 28syl2anc 411 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y ) ) )
3012, 13, 26, 29mpbir3and 1182 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  .~  x )
3113adantrr 479 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  e.  X
)
325, 7, 8, 2eqgval 13296 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
331, 6, 32syl2anc 411 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
3433biimpa 296 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  y  .~  z )  ->  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )
3534adantrl 478 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) )
3635simp2d 1012 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  z  e.  X
)
371adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  G  e.  Grp )
3837, 31, 15syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 x )  e.  X )
3912adantrr 479 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  y  e.  X
)
405, 7grpinvcl 13123 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
4137, 39, 40syl2anc 411 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 y )  e.  X )
425, 8, 37, 41, 36grpcld 13089 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)
435, 8grpass 13084 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 x )  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  x )
( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
4437, 38, 39, 42, 43syl13anc 1251 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
45 eqid 2193 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
465, 8, 45, 7grprinv 13126 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
4737, 39, 46syl2anc 411 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( 0g `  G ) )
4847oveq1d 5934 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
495, 8grpass 13084 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
5037, 39, 41, 36, 49syl13anc 1251 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
515, 8, 45grplid 13106 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5237, 36, 51syl2anc 411 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5348, 50, 523eqtr3d 2234 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  z )
5453oveq2d 5935 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  ( ( ( invg `  G ) `  x
) ( +g  `  G
) z ) )
5544, 54eqtrd 2226 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z ) )
56 simpl 109 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  e.  (SubGrp `  G ) )
5723adantrr 479 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  Y
)
5835simp3d 1013 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  Y
)
598subgcl 13257 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  Y )
6056, 57, 58, 59syl3anc 1249 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  Y )
6155, 60eqeltrrd 2271 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) z )  e.  Y
)
626adantr 276 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  C_  X
)
635, 7, 8, 2eqgval 13296 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6437, 62, 63syl2anc 411 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( x  .~  z 
<->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6531, 36, 61, 64mpbir3and 1182 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  .~  z
)
665, 8, 45, 7grplinv 13125 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
671, 66sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  =  ( 0g `  G
) )
6845subg0cl 13255 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
6968adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ( 0g `  G )  e.  Y )
7067, 69eqeltrd 2270 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )
7170ex 115 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  ->  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
7271pm4.71rd 394 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
735, 7, 8, 2eqgval 13296 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
) ) )
741, 6, 73syl2anc 411 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) ) )
75 df-3an 982 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( x  e.  X  /\  x  e.  X )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
76 anidm 396 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
7776anbi2ci 459 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )  <->  ( (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7875, 77bitri 184 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7974, 78bitrdi 196 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
8072, 79bitr4d 191 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  x  .~  x
) )
814, 30, 65, 80iserd 6615 1  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   Rel wrel 4665   ` cfv 5255  (class class class)co 5919    Er wer 6586   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076  SubGrpcsubg 13240   ~QG cqg 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-er 6589  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-eqg 13245
This theorem is referenced by:  eqgen  13300  eqg0el  13302  qusgrp  13305  qusadd  13307  qusecsub  13404  2idlcpblrng  14022  qus2idrng  14024  qus1  14025  qusrhm  14027  qusmul2  14028  qusmulrng  14031  zndvds  14148
  Copyright terms: Public domain W3C validator