ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqger Unicode version

Theorem eqger 13531
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqger  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)

Proof of Theorem eqger
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 13486 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 eqger.r . . . 4  |-  .~  =  ( G ~QG  Y )
32releqgg 13527 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  (SubGrp `  G
) )  ->  Rel  .~  )
41, 3mpancom 422 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
5 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
65subgss 13481 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
7 eqid 2204 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
8 eqid 2204 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
95, 7, 8, 2eqgval 13530 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) ) )
101, 6, 9syl2anc 411 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y ) ) )
1110biimpa 296 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) )
1211simp2d 1012 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  e.  X )
1311simp1d 1011 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  x  e.  X )
141adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  G  e.  Grp )
155, 7grpinvcl 13351 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  x
)  e.  X )
1614, 13, 15syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  x
)  e.  X )
175, 8, 7grpinvadd 13381 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  x
)  e.  X  /\  y  e.  X )  ->  ( ( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
1814, 16, 12, 17syl3anc 1249 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
195, 7grpinvinv 13370 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2014, 13, 19syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2120oveq2d 5959 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) ( ( invg `  G ) `
 ( ( invg `  G ) `
 x ) ) )  =  ( ( ( invg `  G ) `  y
) ( +g  `  G
) x ) )
2218, 21eqtrd 2237 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) x ) )
2311simp3d 1013 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )
247subginvcl 13490 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2523, 24syldan 282 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2622, 25eqeltrrd 2282 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y )
276adantr 276 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  Y  C_  X )
285, 7, 8, 2eqgval 13530 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) x )  e.  Y
) ) )
2914, 27, 28syl2anc 411 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y ) ) )
3012, 13, 26, 29mpbir3and 1182 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  .~  x )
3113adantrr 479 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  e.  X
)
325, 7, 8, 2eqgval 13530 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
331, 6, 32syl2anc 411 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
3433biimpa 296 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  y  .~  z )  ->  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )
3534adantrl 478 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) )
3635simp2d 1012 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  z  e.  X
)
371adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  G  e.  Grp )
3837, 31, 15syl2anc 411 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 x )  e.  X )
3912adantrr 479 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  y  e.  X
)
405, 7grpinvcl 13351 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
4137, 39, 40syl2anc 411 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 y )  e.  X )
425, 8, 37, 41, 36grpcld 13317 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)
435, 8grpass 13312 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 x )  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  x )
( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
4437, 38, 39, 42, 43syl13anc 1251 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
45 eqid 2204 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
465, 8, 45, 7grprinv 13354 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
4737, 39, 46syl2anc 411 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( 0g `  G ) )
4847oveq1d 5958 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
495, 8grpass 13312 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
5037, 39, 41, 36, 49syl13anc 1251 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
515, 8, 45grplid 13334 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5237, 36, 51syl2anc 411 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5348, 50, 523eqtr3d 2245 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  z )
5453oveq2d 5959 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  ( ( ( invg `  G ) `  x
) ( +g  `  G
) z ) )
5544, 54eqtrd 2237 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z ) )
56 simpl 109 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  e.  (SubGrp `  G ) )
5723adantrr 479 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  Y
)
5835simp3d 1013 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  Y
)
598subgcl 13491 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  Y )
6056, 57, 58, 59syl3anc 1249 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  Y )
6155, 60eqeltrrd 2282 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) z )  e.  Y
)
626adantr 276 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  C_  X
)
635, 7, 8, 2eqgval 13530 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6437, 62, 63syl2anc 411 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( x  .~  z 
<->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6531, 36, 61, 64mpbir3and 1182 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  .~  z
)
665, 8, 45, 7grplinv 13353 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
671, 66sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  =  ( 0g `  G
) )
6845subg0cl 13489 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
6968adantr 276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ( 0g `  G )  e.  Y )
7067, 69eqeltrd 2281 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )
7170ex 115 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  ->  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
7271pm4.71rd 394 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
735, 7, 8, 2eqgval 13530 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
) ) )
741, 6, 73syl2anc 411 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) ) )
75 df-3an 982 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( x  e.  X  /\  x  e.  X )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
76 anidm 396 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
7776anbi2ci 459 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )  <->  ( (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7875, 77bitri 184 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7974, 78bitrdi 196 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
8072, 79bitr4d 191 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  x  .~  x
) )
814, 30, 65, 80iserd 6645 1  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175    C_ wss 3165   class class class wbr 4043   Rel wrel 4679   ` cfv 5270  (class class class)co 5943    Er wer 6616   Basecbs 12803   +g cplusg 12880   0gc0g 13059   Grpcgrp 13303   invgcminusg 13304  SubGrpcsubg 13474   ~QG cqg 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-er 6619  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-subg 13477  df-eqg 13479
This theorem is referenced by:  eqgen  13534  eqg0el  13536  qusgrp  13539  qusadd  13541  qusecsub  13638  2idlcpblrng  14256  qus2idrng  14258  qus1  14259  qusrhm  14261  qusmul2  14262  qusmulrng  14265  zndvds  14382
  Copyright terms: Public domain W3C validator