| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqger | Unicode version | ||
| Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| Ref | Expression |
|---|---|
| eqger |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 13711 |
. . 3
| |
| 2 | eqger.r |
. . . 4
| |
| 3 | 2 | releqgg 13752 |
. . 3
|
| 4 | 1, 3 | mpancom 422 |
. 2
|
| 5 | eqger.x |
. . . . . . 7
| |
| 6 | 5 | subgss 13706 |
. . . . . 6
|
| 7 | eqid 2229 |
. . . . . . 7
| |
| 8 | eqid 2229 |
. . . . . . 7
| |
| 9 | 5, 7, 8, 2 | eqgval 13755 |
. . . . . 6
|
| 10 | 1, 6, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 10 | biimpa 296 |
. . . 4
|
| 12 | 11 | simp2d 1034 |
. . 3
|
| 13 | 11 | simp1d 1033 |
. . 3
|
| 14 | 1 | adantr 276 |
. . . . . 6
|
| 15 | 5, 7 | grpinvcl 13576 |
. . . . . . 7
|
| 16 | 14, 13, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 5, 8, 7 | grpinvadd 13606 |
. . . . . 6
|
| 18 | 14, 16, 12, 17 | syl3anc 1271 |
. . . . 5
|
| 19 | 5, 7 | grpinvinv 13595 |
. . . . . . 7
|
| 20 | 14, 13, 19 | syl2anc 411 |
. . . . . 6
|
| 21 | 20 | oveq2d 6016 |
. . . . 5
|
| 22 | 18, 21 | eqtrd 2262 |
. . . 4
|
| 23 | 11 | simp3d 1035 |
. . . . 5
|
| 24 | 7 | subginvcl 13715 |
. . . . 5
|
| 25 | 23, 24 | syldan 282 |
. . . 4
|
| 26 | 22, 25 | eqeltrrd 2307 |
. . 3
|
| 27 | 6 | adantr 276 |
. . . 4
|
| 28 | 5, 7, 8, 2 | eqgval 13755 |
. . . 4
|
| 29 | 14, 27, 28 | syl2anc 411 |
. . 3
|
| 30 | 12, 13, 26, 29 | mpbir3and 1204 |
. 2
|
| 31 | 13 | adantrr 479 |
. . 3
|
| 32 | 5, 7, 8, 2 | eqgval 13755 |
. . . . . . 7
|
| 33 | 1, 6, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | biimpa 296 |
. . . . 5
|
| 35 | 34 | adantrl 478 |
. . . 4
|
| 36 | 35 | simp2d 1034 |
. . 3
|
| 37 | 1 | adantr 276 |
. . . . . 6
|
| 38 | 37, 31, 15 | syl2anc 411 |
. . . . . 6
|
| 39 | 12 | adantrr 479 |
. . . . . 6
|
| 40 | 5, 7 | grpinvcl 13576 |
. . . . . . . 8
|
| 41 | 37, 39, 40 | syl2anc 411 |
. . . . . . 7
|
| 42 | 5, 8, 37, 41, 36 | grpcld 13542 |
. . . . . 6
|
| 43 | 5, 8 | grpass 13537 |
. . . . . 6
|
| 44 | 37, 38, 39, 42, 43 | syl13anc 1273 |
. . . . 5
|
| 45 | eqid 2229 |
. . . . . . . . . 10
| |
| 46 | 5, 8, 45, 7 | grprinv 13579 |
. . . . . . . . 9
|
| 47 | 37, 39, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 47 | oveq1d 6015 |
. . . . . . 7
|
| 49 | 5, 8 | grpass 13537 |
. . . . . . . 8
|
| 50 | 37, 39, 41, 36, 49 | syl13anc 1273 |
. . . . . . 7
|
| 51 | 5, 8, 45 | grplid 13559 |
. . . . . . . 8
|
| 52 | 37, 36, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 48, 50, 52 | 3eqtr3d 2270 |
. . . . . 6
|
| 54 | 53 | oveq2d 6016 |
. . . . 5
|
| 55 | 44, 54 | eqtrd 2262 |
. . . 4
|
| 56 | simpl 109 |
. . . . 5
| |
| 57 | 23 | adantrr 479 |
. . . . 5
|
| 58 | 35 | simp3d 1035 |
. . . . 5
|
| 59 | 8 | subgcl 13716 |
. . . . 5
|
| 60 | 56, 57, 58, 59 | syl3anc 1271 |
. . . 4
|
| 61 | 55, 60 | eqeltrrd 2307 |
. . 3
|
| 62 | 6 | adantr 276 |
. . . 4
|
| 63 | 5, 7, 8, 2 | eqgval 13755 |
. . . 4
|
| 64 | 37, 62, 63 | syl2anc 411 |
. . 3
|
| 65 | 31, 36, 61, 64 | mpbir3and 1204 |
. 2
|
| 66 | 5, 8, 45, 7 | grplinv 13578 |
. . . . . . 7
|
| 67 | 1, 66 | sylan 283 |
. . . . . 6
|
| 68 | 45 | subg0cl 13714 |
. . . . . . 7
|
| 69 | 68 | adantr 276 |
. . . . . 6
|
| 70 | 67, 69 | eqeltrd 2306 |
. . . . 5
|
| 71 | 70 | ex 115 |
. . . 4
|
| 72 | 71 | pm4.71rd 394 |
. . 3
|
| 73 | 5, 7, 8, 2 | eqgval 13755 |
. . . . 5
|
| 74 | 1, 6, 73 | syl2anc 411 |
. . . 4
|
| 75 | df-3an 1004 |
. . . . 5
| |
| 76 | anidm 396 |
. . . . . 6
| |
| 77 | 76 | anbi2ci 459 |
. . . . 5
|
| 78 | 75, 77 | bitri 184 |
. . . 4
|
| 79 | 74, 78 | bitrdi 196 |
. . 3
|
| 80 | 72, 79 | bitr4d 191 |
. 2
|
| 81 | 4, 30, 65, 80 | iserd 6704 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-er 6678 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-subg 13702 df-eqg 13704 |
| This theorem is referenced by: eqgen 13759 eqg0el 13761 qusgrp 13764 qusadd 13766 qusecsub 13863 2idlcpblrng 14481 qus2idrng 14483 qus1 14484 qusrhm 14486 qusmul2 14487 qusmulrng 14490 zndvds 14607 |
| Copyright terms: Public domain | W3C validator |