| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqger | Unicode version | ||
| Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| eqger.x | 
 | 
| eqger.r | 
 | 
| Ref | Expression | 
|---|---|
| eqger | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subgrcl 13309 | 
. . 3
 | |
| 2 | eqger.r | 
. . . 4
 | |
| 3 | 2 | releqgg 13350 | 
. . 3
 | 
| 4 | 1, 3 | mpancom 422 | 
. 2
 | 
| 5 | eqger.x | 
. . . . . . 7
 | |
| 6 | 5 | subgss 13304 | 
. . . . . 6
 | 
| 7 | eqid 2196 | 
. . . . . . 7
 | |
| 8 | eqid 2196 | 
. . . . . . 7
 | |
| 9 | 5, 7, 8, 2 | eqgval 13353 | 
. . . . . 6
 | 
| 10 | 1, 6, 9 | syl2anc 411 | 
. . . . 5
 | 
| 11 | 10 | biimpa 296 | 
. . . 4
 | 
| 12 | 11 | simp2d 1012 | 
. . 3
 | 
| 13 | 11 | simp1d 1011 | 
. . 3
 | 
| 14 | 1 | adantr 276 | 
. . . . . 6
 | 
| 15 | 5, 7 | grpinvcl 13180 | 
. . . . . . 7
 | 
| 16 | 14, 13, 15 | syl2anc 411 | 
. . . . . 6
 | 
| 17 | 5, 8, 7 | grpinvadd 13210 | 
. . . . . 6
 | 
| 18 | 14, 16, 12, 17 | syl3anc 1249 | 
. . . . 5
 | 
| 19 | 5, 7 | grpinvinv 13199 | 
. . . . . . 7
 | 
| 20 | 14, 13, 19 | syl2anc 411 | 
. . . . . 6
 | 
| 21 | 20 | oveq2d 5938 | 
. . . . 5
 | 
| 22 | 18, 21 | eqtrd 2229 | 
. . . 4
 | 
| 23 | 11 | simp3d 1013 | 
. . . . 5
 | 
| 24 | 7 | subginvcl 13313 | 
. . . . 5
 | 
| 25 | 23, 24 | syldan 282 | 
. . . 4
 | 
| 26 | 22, 25 | eqeltrrd 2274 | 
. . 3
 | 
| 27 | 6 | adantr 276 | 
. . . 4
 | 
| 28 | 5, 7, 8, 2 | eqgval 13353 | 
. . . 4
 | 
| 29 | 14, 27, 28 | syl2anc 411 | 
. . 3
 | 
| 30 | 12, 13, 26, 29 | mpbir3and 1182 | 
. 2
 | 
| 31 | 13 | adantrr 479 | 
. . 3
 | 
| 32 | 5, 7, 8, 2 | eqgval 13353 | 
. . . . . . 7
 | 
| 33 | 1, 6, 32 | syl2anc 411 | 
. . . . . 6
 | 
| 34 | 33 | biimpa 296 | 
. . . . 5
 | 
| 35 | 34 | adantrl 478 | 
. . . 4
 | 
| 36 | 35 | simp2d 1012 | 
. . 3
 | 
| 37 | 1 | adantr 276 | 
. . . . . 6
 | 
| 38 | 37, 31, 15 | syl2anc 411 | 
. . . . . 6
 | 
| 39 | 12 | adantrr 479 | 
. . . . . 6
 | 
| 40 | 5, 7 | grpinvcl 13180 | 
. . . . . . . 8
 | 
| 41 | 37, 39, 40 | syl2anc 411 | 
. . . . . . 7
 | 
| 42 | 5, 8, 37, 41, 36 | grpcld 13146 | 
. . . . . 6
 | 
| 43 | 5, 8 | grpass 13141 | 
. . . . . 6
 | 
| 44 | 37, 38, 39, 42, 43 | syl13anc 1251 | 
. . . . 5
 | 
| 45 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 46 | 5, 8, 45, 7 | grprinv 13183 | 
. . . . . . . . 9
 | 
| 47 | 37, 39, 46 | syl2anc 411 | 
. . . . . . . 8
 | 
| 48 | 47 | oveq1d 5937 | 
. . . . . . 7
 | 
| 49 | 5, 8 | grpass 13141 | 
. . . . . . . 8
 | 
| 50 | 37, 39, 41, 36, 49 | syl13anc 1251 | 
. . . . . . 7
 | 
| 51 | 5, 8, 45 | grplid 13163 | 
. . . . . . . 8
 | 
| 52 | 37, 36, 51 | syl2anc 411 | 
. . . . . . 7
 | 
| 53 | 48, 50, 52 | 3eqtr3d 2237 | 
. . . . . 6
 | 
| 54 | 53 | oveq2d 5938 | 
. . . . 5
 | 
| 55 | 44, 54 | eqtrd 2229 | 
. . . 4
 | 
| 56 | simpl 109 | 
. . . . 5
 | |
| 57 | 23 | adantrr 479 | 
. . . . 5
 | 
| 58 | 35 | simp3d 1013 | 
. . . . 5
 | 
| 59 | 8 | subgcl 13314 | 
. . . . 5
 | 
| 60 | 56, 57, 58, 59 | syl3anc 1249 | 
. . . 4
 | 
| 61 | 55, 60 | eqeltrrd 2274 | 
. . 3
 | 
| 62 | 6 | adantr 276 | 
. . . 4
 | 
| 63 | 5, 7, 8, 2 | eqgval 13353 | 
. . . 4
 | 
| 64 | 37, 62, 63 | syl2anc 411 | 
. . 3
 | 
| 65 | 31, 36, 61, 64 | mpbir3and 1182 | 
. 2
 | 
| 66 | 5, 8, 45, 7 | grplinv 13182 | 
. . . . . . 7
 | 
| 67 | 1, 66 | sylan 283 | 
. . . . . 6
 | 
| 68 | 45 | subg0cl 13312 | 
. . . . . . 7
 | 
| 69 | 68 | adantr 276 | 
. . . . . 6
 | 
| 70 | 67, 69 | eqeltrd 2273 | 
. . . . 5
 | 
| 71 | 70 | ex 115 | 
. . . 4
 | 
| 72 | 71 | pm4.71rd 394 | 
. . 3
 | 
| 73 | 5, 7, 8, 2 | eqgval 13353 | 
. . . . 5
 | 
| 74 | 1, 6, 73 | syl2anc 411 | 
. . . 4
 | 
| 75 | df-3an 982 | 
. . . . 5
 | |
| 76 | anidm 396 | 
. . . . . 6
 | |
| 77 | 76 | anbi2ci 459 | 
. . . . 5
 | 
| 78 | 75, 77 | bitri 184 | 
. . . 4
 | 
| 79 | 74, 78 | bitrdi 196 | 
. . 3
 | 
| 80 | 72, 79 | bitr4d 191 | 
. 2
 | 
| 81 | 4, 30, 65, 80 | iserd 6618 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-er 6592 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-eqg 13302 | 
| This theorem is referenced by: eqgen 13357 eqg0el 13359 qusgrp 13362 qusadd 13364 qusecsub 13461 2idlcpblrng 14079 qus2idrng 14081 qus1 14082 qusrhm 14084 qusmul2 14085 qusmulrng 14088 zndvds 14205 | 
| Copyright terms: Public domain | W3C validator |