Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnen2lp Unicode version

Theorem bj-nnen2lp 16275
Description: A version of en2lp 4645 for natural numbers, which does not require ax-setind 4628.

Note: using this theorem and bj-nnelirr 16274, one can remove dependency on ax-setind 4628 from nntri2 6638 and nndcel 6644; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-nnen2lp  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )

Proof of Theorem bj-nnen2lp
StepHypRef Expression
1 bj-nnelirr 16274 . . 3  |-  ( B  e.  om  ->  -.  B  e.  B )
21adantl 277 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  B  e.  B
)
3 bj-nntrans 16272 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A 
C_  B ) )
43adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
5 ssel 3218 . . . 4  |-  ( A 
C_  B  ->  ( B  e.  A  ->  B  e.  B ) )
64, 5syl6 33 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( B  e.  A  ->  B  e.  B ) ) )
76impd 254 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  /\  B  e.  A )  ->  B  e.  B ) )
82, 7mtod 667 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2200    C_ wss 3197   omcom 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4209  ax-pr 4292  ax-un 4523  ax-bd0 16134  ax-bdor 16137  ax-bdn 16138  ax-bdal 16139  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143  ax-bdsep 16205  ax-infvn 16262
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4461  df-iom 4682  df-bdc 16162  df-bj-ind 16248
This theorem is referenced by:  bj-peano4  16276
  Copyright terms: Public domain W3C validator