Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnen2lp Unicode version

Theorem bj-nnen2lp 15852
Description: A version of en2lp 4601 for natural numbers, which does not require ax-setind 4584.

Note: using this theorem and bj-nnelirr 15851, one can remove dependency on ax-setind 4584 from nntri2 6579 and nndcel 6585; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-nnen2lp  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )

Proof of Theorem bj-nnen2lp
StepHypRef Expression
1 bj-nnelirr 15851 . . 3  |-  ( B  e.  om  ->  -.  B  e.  B )
21adantl 277 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  B  e.  B
)
3 bj-nntrans 15849 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A 
C_  B ) )
43adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
5 ssel 3186 . . . 4  |-  ( A 
C_  B  ->  ( B  e.  A  ->  B  e.  B ) )
64, 5syl6 33 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( B  e.  A  ->  B  e.  B ) ) )
76impd 254 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  /\  B  e.  A )  ->  B  e.  B ) )
82, 7mtod 664 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2175    C_ wss 3165   omcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4479  ax-bd0 15711  ax-bdor 15714  ax-bdn 15715  ax-bdal 15716  ax-bdex 15717  ax-bdeq 15718  ax-bdel 15719  ax-bdsb 15720  ax-bdsep 15782  ax-infvn 15839
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638  df-bdc 15739  df-bj-ind 15825
This theorem is referenced by:  bj-peano4  15853
  Copyright terms: Public domain W3C validator