Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnen2lp Unicode version

Theorem bj-nnen2lp 15684
Description: A version of en2lp 4591 for natural numbers, which does not require ax-setind 4574.

Note: using this theorem and bj-nnelirr 15683, one can remove dependency on ax-setind 4574 from nntri2 6561 and nndcel 6567; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-nnen2lp  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )

Proof of Theorem bj-nnen2lp
StepHypRef Expression
1 bj-nnelirr 15683 . . 3  |-  ( B  e.  om  ->  -.  B  e.  B )
21adantl 277 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  B  e.  B
)
3 bj-nntrans 15681 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A 
C_  B ) )
43adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
5 ssel 3178 . . . 4  |-  ( A 
C_  B  ->  ( B  e.  A  ->  B  e.  B ) )
64, 5syl6 33 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( B  e.  A  ->  B  e.  B ) ) )
76impd 254 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  /\  B  e.  A )  ->  B  e.  B ) )
82, 7mtod 664 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167    C_ wss 3157   omcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4160  ax-pr 4243  ax-un 4469  ax-bd0 15543  ax-bdor 15546  ax-bdn 15547  ax-bdal 15548  ax-bdex 15549  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552  ax-bdsep 15614  ax-infvn 15671
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-suc 4407  df-iom 4628  df-bdc 15571  df-bj-ind 15657
This theorem is referenced by:  bj-peano4  15685
  Copyright terms: Public domain W3C validator