| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnen2lp | GIF version | ||
| Description: A version of en2lp 4609 for natural numbers, which does not require
ax-setind 4592.
Note: using this theorem and bj-nnelirr 16023, one can remove dependency on ax-setind 4592 from nntri2 6592 and nndcel 6598; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnen2lp | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnelirr 16023 | . . 3 ⊢ (𝐵 ∈ ω → ¬ 𝐵 ∈ 𝐵) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵 ∈ 𝐵) |
| 3 | bj-nntrans 16021 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 5 | ssel 3191 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
| 6 | 4, 5 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵))) |
| 7 | 6 | impd 254 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐵)) |
| 8 | 2, 7 | mtod 665 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 ωcom 4645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4177 ax-pr 4260 ax-un 4487 ax-bd0 15883 ax-bdor 15886 ax-bdn 15887 ax-bdal 15888 ax-bdex 15889 ax-bdeq 15890 ax-bdel 15891 ax-bdsb 15892 ax-bdsep 15954 ax-infvn 16011 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3643 df-pr 3644 df-uni 3856 df-int 3891 df-suc 4425 df-iom 4646 df-bdc 15911 df-bj-ind 15997 |
| This theorem is referenced by: bj-peano4 16025 |
| Copyright terms: Public domain | W3C validator |