| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnen2lp | GIF version | ||
| Description: A version of en2lp 4643 for natural numbers, which does not require
ax-setind 4626.
Note: using this theorem and bj-nnelirr 16246, one can remove dependency on ax-setind 4626 from nntri2 6630 and nndcel 6636; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnen2lp | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnelirr 16246 | . . 3 ⊢ (𝐵 ∈ ω → ¬ 𝐵 ∈ 𝐵) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵 ∈ 𝐵) |
| 3 | bj-nntrans 16244 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 5 | ssel 3218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
| 6 | 4, 5 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵))) |
| 7 | 6 | impd 254 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐵)) |
| 8 | 2, 7 | mtod 667 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 ωcom 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4521 ax-bd0 16106 ax-bdor 16109 ax-bdn 16110 ax-bdal 16111 ax-bdex 16112 ax-bdeq 16113 ax-bdel 16114 ax-bdsb 16115 ax-bdsep 16177 ax-infvn 16234 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4459 df-iom 4680 df-bdc 16134 df-bj-ind 16220 |
| This theorem is referenced by: bj-peano4 16248 |
| Copyright terms: Public domain | W3C validator |