Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnen2lp GIF version

Theorem bj-nnen2lp 15516
Description: A version of en2lp 4587 for natural numbers, which does not require ax-setind 4570.

Note: using this theorem and bj-nnelirr 15515, one can remove dependency on ax-setind 4570 from nntri2 6549 and nndcel 6555; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-nnen2lp ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem bj-nnen2lp
StepHypRef Expression
1 bj-nnelirr 15515 . . 3 (𝐵 ∈ ω → ¬ 𝐵𝐵)
21adantl 277 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵𝐵)
3 bj-nntrans 15513 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
43adantl 277 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
5 ssel 3174 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
64, 5syl6 33 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐵𝐴𝐵𝐵)))
76impd 254 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐵𝐴) → 𝐵𝐵))
82, 7mtod 664 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  wss 3154  ωcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4156  ax-pr 4239  ax-un 4465  ax-bd0 15375  ax-bdor 15378  ax-bdn 15379  ax-bdal 15380  ax-bdex 15381  ax-bdeq 15382  ax-bdel 15383  ax-bdsb 15384  ax-bdsep 15446  ax-infvn 15503
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624  df-bdc 15403  df-bj-ind 15489
This theorem is referenced by:  bj-peano4  15517
  Copyright terms: Public domain W3C validator