![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnen2lp | GIF version |
Description: A version of en2lp 4574 for natural numbers, which does not require
ax-setind 4557.
Note: using this theorem and bj-nnelirr 15191, one can remove dependency on ax-setind 4557 from nntri2 6523 and nndcel 6529; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnen2lp | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnelirr 15191 | . . 3 ⊢ (𝐵 ∈ ω → ¬ 𝐵 ∈ 𝐵) | |
2 | 1 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵 ∈ 𝐵) |
3 | bj-nntrans 15189 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
5 | ssel 3164 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵))) |
7 | 6 | impd 254 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐵)) |
8 | 2, 7 | mtod 664 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2160 ⊆ wss 3144 ωcom 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-nul 4147 ax-pr 4230 ax-un 4454 ax-bd0 15051 ax-bdor 15054 ax-bdn 15055 ax-bdal 15056 ax-bdex 15057 ax-bdeq 15058 ax-bdel 15059 ax-bdsb 15060 ax-bdsep 15122 ax-infvn 15179 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-sn 3616 df-pr 3617 df-uni 3828 df-int 3863 df-suc 4392 df-iom 4611 df-bdc 15079 df-bj-ind 15165 |
This theorem is referenced by: bj-peano4 15193 |
Copyright terms: Public domain | W3C validator |