| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim | Unicode version | ||
| Description: Express the predicate:
The limit of complex number sequence |
| Ref | Expression |
|---|---|
| clim.1 |
|
| clim.3 |
|
| Ref | Expression |
|---|---|
| clim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 11786 |
. . . . 5
| |
| 2 | 1 | brrelex2i 4762 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | elex 2811 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | clim.1 |
. . . 4
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2298 |
. . . . . . 7
|
| 10 | fveq1 5625 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . . 12
|
| 12 | 11 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 13 | oveq12 6009 |
. . . . . . . . . . . . . 14
| |
| 14 | 10, 13 | sylan 283 |
. . . . . . . . . . . . 13
|
| 15 | 14 | fveq2d 5630 |
. . . . . . . . . . . 12
|
| 16 | 15 | breq1d 4092 |
. . . . . . . . . . 11
|
| 17 | 12, 16 | anbi12d 473 |
. . . . . . . . . 10
|
| 18 | 17 | ralbidv 2530 |
. . . . . . . . 9
|
| 19 | 18 | rexbidv 2531 |
. . . . . . . 8
|
| 20 | 19 | ralbidv 2530 |
. . . . . . 7
|
| 21 | 9, 20 | anbi12d 473 |
. . . . . 6
|
| 22 | df-clim 11785 |
. . . . . 6
| |
| 23 | 21, 22 | brabga 4351 |
. . . . 5
|
| 24 | 23 | ex 115 |
. . . 4
|
| 25 | 7, 24 | syl 14 |
. . 3
|
| 26 | 3, 6, 25 | pm5.21ndd 710 |
. 2
|
| 27 | eluzelz 9727 |
. . . . . . 7
| |
| 28 | clim.3 |
. . . . . . . . 9
| |
| 29 | 28 | eleq1d 2298 |
. . . . . . . 8
|
| 30 | 28 | oveq1d 6015 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5630 |
. . . . . . . . 9
|
| 32 | 31 | breq1d 4092 |
. . . . . . . 8
|
| 33 | 29, 32 | anbi12d 473 |
. . . . . . 7
|
| 34 | 27, 33 | sylan2 286 |
. . . . . 6
|
| 35 | 34 | ralbidva 2526 |
. . . . 5
|
| 36 | 35 | rexbidv 2531 |
. . . 4
|
| 37 | 36 | ralbidv 2530 |
. . 3
|
| 38 | 37 | anbi2d 464 |
. 2
|
| 39 | 26, 38 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 df-uz 9719 df-clim 11785 |
| This theorem is referenced by: climcl 11788 clim2 11789 climshftlemg 11808 |
| Copyright terms: Public domain | W3C validator |