Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clim | Unicode version |
Description: Express the predicate: The limit of complex number sequence is , or converges to . This means that for any real , no matter how small, there always exists an integer such that the absolute difference of any later complex number in the sequence and the limit is less than . (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
clim.1 | |
clim.3 |
Ref | Expression |
---|---|
clim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 11159 | . . . . 5 | |
2 | 1 | brrelex2i 4627 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | elex 2723 | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 5 | a1i 9 | . . 3 |
7 | clim.1 | . . . 4 | |
8 | simpr 109 | . . . . . . . 8 | |
9 | 8 | eleq1d 2226 | . . . . . . 7 |
10 | fveq1 5464 | . . . . . . . . . . . . 13 | |
11 | 10 | adantr 274 | . . . . . . . . . . . 12 |
12 | 11 | eleq1d 2226 | . . . . . . . . . . 11 |
13 | oveq12 5827 | . . . . . . . . . . . . . 14 | |
14 | 10, 13 | sylan 281 | . . . . . . . . . . . . 13 |
15 | 14 | fveq2d 5469 | . . . . . . . . . . . 12 |
16 | 15 | breq1d 3975 | . . . . . . . . . . 11 |
17 | 12, 16 | anbi12d 465 | . . . . . . . . . 10 |
18 | 17 | ralbidv 2457 | . . . . . . . . 9 |
19 | 18 | rexbidv 2458 | . . . . . . . 8 |
20 | 19 | ralbidv 2457 | . . . . . . 7 |
21 | 9, 20 | anbi12d 465 | . . . . . 6 |
22 | df-clim 11158 | . . . . . 6 | |
23 | 21, 22 | brabga 4223 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 7, 24 | syl 14 | . . 3 |
26 | 3, 6, 25 | pm5.21ndd 695 | . 2 |
27 | eluzelz 9431 | . . . . . . 7 | |
28 | clim.3 | . . . . . . . . 9 | |
29 | 28 | eleq1d 2226 | . . . . . . . 8 |
30 | 28 | oveq1d 5833 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5469 | . . . . . . . . 9 |
32 | 31 | breq1d 3975 | . . . . . . . 8 |
33 | 29, 32 | anbi12d 465 | . . . . . . 7 |
34 | 27, 33 | sylan2 284 | . . . . . 6 |
35 | 34 | ralbidva 2453 | . . . . 5 |
36 | 35 | rexbidv 2458 | . . . 4 |
37 | 36 | ralbidv 2457 | . . 3 |
38 | 37 | anbi2d 460 | . 2 |
39 | 26, 38 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 cvv 2712 class class class wbr 3965 cfv 5167 (class class class)co 5818 cc 7713 clt 7895 cmin 8029 cz 9150 cuz 9422 crp 9542 cabs 10879 cli 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-cnex 7806 ax-resscn 7807 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-neg 8032 df-z 9151 df-uz 9423 df-clim 11158 |
This theorem is referenced by: climcl 11161 clim2 11162 climshftlemg 11181 |
Copyright terms: Public domain | W3C validator |