Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clim | Unicode version |
Description: Express the predicate: The limit of complex number sequence is , or converges to . This means that for any real , no matter how small, there always exists an integer such that the absolute difference of any later complex number in the sequence and the limit is less than . (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
clim.1 | |
clim.3 |
Ref | Expression |
---|---|
clim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 11243 | . . . . 5 | |
2 | 1 | brrelex2i 4655 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | elex 2741 | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 5 | a1i 9 | . . 3 |
7 | clim.1 | . . . 4 | |
8 | simpr 109 | . . . . . . . 8 | |
9 | 8 | eleq1d 2239 | . . . . . . 7 |
10 | fveq1 5495 | . . . . . . . . . . . . 13 | |
11 | 10 | adantr 274 | . . . . . . . . . . . 12 |
12 | 11 | eleq1d 2239 | . . . . . . . . . . 11 |
13 | oveq12 5862 | . . . . . . . . . . . . . 14 | |
14 | 10, 13 | sylan 281 | . . . . . . . . . . . . 13 |
15 | 14 | fveq2d 5500 | . . . . . . . . . . . 12 |
16 | 15 | breq1d 3999 | . . . . . . . . . . 11 |
17 | 12, 16 | anbi12d 470 | . . . . . . . . . 10 |
18 | 17 | ralbidv 2470 | . . . . . . . . 9 |
19 | 18 | rexbidv 2471 | . . . . . . . 8 |
20 | 19 | ralbidv 2470 | . . . . . . 7 |
21 | 9, 20 | anbi12d 470 | . . . . . 6 |
22 | df-clim 11242 | . . . . . 6 | |
23 | 21, 22 | brabga 4249 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 7, 24 | syl 14 | . . 3 |
26 | 3, 6, 25 | pm5.21ndd 700 | . 2 |
27 | eluzelz 9496 | . . . . . . 7 | |
28 | clim.3 | . . . . . . . . 9 | |
29 | 28 | eleq1d 2239 | . . . . . . . 8 |
30 | 28 | oveq1d 5868 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5500 | . . . . . . . . 9 |
32 | 31 | breq1d 3999 | . . . . . . . 8 |
33 | 29, 32 | anbi12d 470 | . . . . . . 7 |
34 | 27, 33 | sylan2 284 | . . . . . 6 |
35 | 34 | ralbidva 2466 | . . . . 5 |
36 | 35 | rexbidv 2471 | . . . 4 |
37 | 36 | ralbidv 2470 | . . 3 |
38 | 37 | anbi2d 461 | . 2 |
39 | 26, 38 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 clt 7954 cmin 8090 cz 9212 cuz 9487 crp 9610 cabs 10961 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 df-clim 11242 |
This theorem is referenced by: climcl 11245 clim2 11246 climshftlemg 11265 |
Copyright terms: Public domain | W3C validator |