| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim | Unicode version | ||
| Description: Express the predicate:
The limit of complex number sequence |
| Ref | Expression |
|---|---|
| clim.1 |
|
| clim.3 |
|
| Ref | Expression |
|---|---|
| clim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 11562 |
. . . . 5
| |
| 2 | 1 | brrelex2i 4718 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | elex 2782 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | clim.1 |
. . . 4
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2273 |
. . . . . . 7
|
| 10 | fveq1 5574 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . . 12
|
| 12 | 11 | eleq1d 2273 |
. . . . . . . . . . 11
|
| 13 | oveq12 5952 |
. . . . . . . . . . . . . 14
| |
| 14 | 10, 13 | sylan 283 |
. . . . . . . . . . . . 13
|
| 15 | 14 | fveq2d 5579 |
. . . . . . . . . . . 12
|
| 16 | 15 | breq1d 4053 |
. . . . . . . . . . 11
|
| 17 | 12, 16 | anbi12d 473 |
. . . . . . . . . 10
|
| 18 | 17 | ralbidv 2505 |
. . . . . . . . 9
|
| 19 | 18 | rexbidv 2506 |
. . . . . . . 8
|
| 20 | 19 | ralbidv 2505 |
. . . . . . 7
|
| 21 | 9, 20 | anbi12d 473 |
. . . . . 6
|
| 22 | df-clim 11561 |
. . . . . 6
| |
| 23 | 21, 22 | brabga 4309 |
. . . . 5
|
| 24 | 23 | ex 115 |
. . . 4
|
| 25 | 7, 24 | syl 14 |
. . 3
|
| 26 | 3, 6, 25 | pm5.21ndd 706 |
. 2
|
| 27 | eluzelz 9656 |
. . . . . . 7
| |
| 28 | clim.3 |
. . . . . . . . 9
| |
| 29 | 28 | eleq1d 2273 |
. . . . . . . 8
|
| 30 | 28 | oveq1d 5958 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5579 |
. . . . . . . . 9
|
| 32 | 31 | breq1d 4053 |
. . . . . . . 8
|
| 33 | 29, 32 | anbi12d 473 |
. . . . . . 7
|
| 34 | 27, 33 | sylan2 286 |
. . . . . 6
|
| 35 | 34 | ralbidva 2501 |
. . . . 5
|
| 36 | 35 | rexbidv 2506 |
. . . 4
|
| 37 | 36 | ralbidv 2505 |
. . 3
|
| 38 | 37 | anbi2d 464 |
. 2
|
| 39 | 26, 38 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 df-uz 9648 df-clim 11561 |
| This theorem is referenced by: climcl 11564 clim2 11565 climshftlemg 11584 |
| Copyright terms: Public domain | W3C validator |