ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim Unicode version

Theorem clim 11160
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
clim.1  |-  ( ph  ->  F  e.  V )
clim.3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
Assertion
Ref Expression
clim  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x
Allowed substitution hints:    B( x, j, k)    V( x, j, k)

Proof of Theorem clim
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11159 . . . . 5  |-  Rel  ~~>
21brrelex2i 4627 . . . 4  |-  ( F  ~~>  A  ->  A  e.  _V )
32a1i 9 . . 3  |-  ( ph  ->  ( F  ~~>  A  ->  A  e.  _V )
)
4 elex 2723 . . . . 5  |-  ( A  e.  CC  ->  A  e.  _V )
54adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V )
65a1i 9 . . 3  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V ) )
7 clim.1 . . . 4  |-  ( ph  ->  F  e.  V )
8 simpr 109 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  y  =  A )
98eleq1d 2226 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( y  e.  CC  <->  A  e.  CC ) )
10 fveq1 5464 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
1110adantr 274 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( f `  k
)  =  ( F `
 k ) )
1211eleq1d 2226 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  e.  CC  <->  ( F `  k )  e.  CC ) )
13 oveq12 5827 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  =  ( F `
 k )  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1410, 13sylan 281 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1514fveq2d 5469 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( abs `  (
( f `  k
)  -  y ) )  =  ( abs `  ( ( F `  k )  -  A
) ) )
1615breq1d 3975 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( abs `  (
( f `  k
)  -  y ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
1712, 16anbi12d 465 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( ( f `
 k )  e.  CC  /\  ( abs `  ( ( f `  k )  -  y
) )  <  x
)  <->  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  x
) ) )
1817ralbidv 2457 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
1918rexbidv 2458 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2019ralbidv 2457 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
 k )  -  y ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
219, 20anbi12d 465 . . . . . 6  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
22 df-clim 11158 . . . . . 6  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
2321, 22brabga 4223 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  _V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
2423ex 114 . . . 4  |-  ( F  e.  V  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
257, 24syl 14 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
263, 6, 25pm5.21ndd 695 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
27 eluzelz 9431 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
28 clim.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
2928eleq1d 2226 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  e.  CC  <->  B  e.  CC ) )
3028oveq1d 5833 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  -  A )  =  ( B  -  A
) )
3130fveq2d 5469 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( abs `  ( ( F `  k )  -  A
) )  =  ( abs `  ( B  -  A ) ) )
3231breq1d 3975 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( abs `  ( ( F `  k )  -  A ) )  <  x  <->  ( abs `  ( B  -  A
) )  <  x
) )
3329, 32anbi12d 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3427, 33sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3534ralbidva 2453 . . . . 5  |-  ( ph  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x ) ) )
3635rexbidv 2458 . . . 4  |-  ( ph  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
3736ralbidv 2457 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
3837anbi2d 460 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
3926, 38bitrd 187 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   _Vcvv 2712   class class class wbr 3965   ` cfv 5167  (class class class)co 5818   CCcc 7713    < clt 7895    - cmin 8029   ZZcz 9150   ZZ>=cuz 9422   RR+crp 9542   abscabs 10879    ~~> cli 11157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-cnex 7806  ax-resscn 7807
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-neg 8032  df-z 9151  df-uz 9423  df-clim 11158
This theorem is referenced by:  climcl  11161  clim2  11162  climshftlemg  11181
  Copyright terms: Public domain W3C validator