Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clim | Unicode version |
Description: Express the predicate: The limit of complex number sequence is , or converges to . This means that for any real , no matter how small, there always exists an integer such that the absolute difference of any later complex number in the sequence and the limit is less than . (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
clim.1 | |
clim.3 |
Ref | Expression |
---|---|
clim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 11221 | . . . . 5 | |
2 | 1 | brrelex2i 4648 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | elex 2737 | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 5 | a1i 9 | . . 3 |
7 | clim.1 | . . . 4 | |
8 | simpr 109 | . . . . . . . 8 | |
9 | 8 | eleq1d 2235 | . . . . . . 7 |
10 | fveq1 5485 | . . . . . . . . . . . . 13 | |
11 | 10 | adantr 274 | . . . . . . . . . . . 12 |
12 | 11 | eleq1d 2235 | . . . . . . . . . . 11 |
13 | oveq12 5851 | . . . . . . . . . . . . . 14 | |
14 | 10, 13 | sylan 281 | . . . . . . . . . . . . 13 |
15 | 14 | fveq2d 5490 | . . . . . . . . . . . 12 |
16 | 15 | breq1d 3992 | . . . . . . . . . . 11 |
17 | 12, 16 | anbi12d 465 | . . . . . . . . . 10 |
18 | 17 | ralbidv 2466 | . . . . . . . . 9 |
19 | 18 | rexbidv 2467 | . . . . . . . 8 |
20 | 19 | ralbidv 2466 | . . . . . . 7 |
21 | 9, 20 | anbi12d 465 | . . . . . 6 |
22 | df-clim 11220 | . . . . . 6 | |
23 | 21, 22 | brabga 4242 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 7, 24 | syl 14 | . . 3 |
26 | 3, 6, 25 | pm5.21ndd 695 | . 2 |
27 | eluzelz 9475 | . . . . . . 7 | |
28 | clim.3 | . . . . . . . . 9 | |
29 | 28 | eleq1d 2235 | . . . . . . . 8 |
30 | 28 | oveq1d 5857 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5490 | . . . . . . . . 9 |
32 | 31 | breq1d 3992 | . . . . . . . 8 |
33 | 29, 32 | anbi12d 465 | . . . . . . 7 |
34 | 27, 33 | sylan2 284 | . . . . . 6 |
35 | 34 | ralbidva 2462 | . . . . 5 |
36 | 35 | rexbidv 2467 | . . . 4 |
37 | 36 | ralbidv 2466 | . . 3 |
38 | 37 | anbi2d 460 | . 2 |
39 | 26, 38 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 clt 7933 cmin 8069 cz 9191 cuz 9466 crp 9589 cabs 10939 cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 df-uz 9467 df-clim 11220 |
This theorem is referenced by: climcl 11223 clim2 11224 climshftlemg 11243 |
Copyright terms: Public domain | W3C validator |