ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex Unicode version

Theorem ovshftex 10761
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )

Proof of Theorem ovshftex
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 10760 . . 3  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
21ancoms 266 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
3 cnex 7877 . . . 4  |-  CC  e.  _V
43a1i 9 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  CC  e.  _V )
5 rnexg 4869 . . . . 5  |-  ( F  e.  V  ->  ran  F  e.  _V )
65ad2antrr 480 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  ran  F  e.  _V )
7 vex 2729 . . . . . . . 8  |-  u  e. 
_V
8 breq2 3986 . . . . . . . 8  |-  ( w  =  u  ->  (
( z  -  A
) F w  <->  ( z  -  A ) F u ) )
97, 8elab 2870 . . . . . . 7  |-  ( u  e.  { w  |  ( z  -  A
) F w }  <->  ( z  -  A ) F u )
10 simpr 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
11 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  A  e.  CC )
1210, 11subcld 8209 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( z  -  A
)  e.  CC )
13 brelrng 4835 . . . . . . . . . 10  |-  ( ( ( z  -  A
)  e.  CC  /\  u  e.  _V  /\  (
z  -  A ) F u )  ->  u  e.  ran  F )
147, 13mp3an2 1315 . . . . . . . . 9  |-  ( ( ( z  -  A
)  e.  CC  /\  ( z  -  A
) F u )  ->  u  e.  ran  F )
1512, 14sylan 281 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  z  e.  CC )  /\  ( z  -  A ) F u )  ->  u  e.  ran  F )
1615ex 114 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  -  A ) F u  ->  u  e.  ran  F ) )
179, 16syl5bi 151 . . . . . 6  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( u  e.  {
w  |  ( z  -  A ) F w }  ->  u  e.  ran  F ) )
1817ssrdv 3148 . . . . 5  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  { w  |  ( z  -  A ) F w }  C_  ran  F )
1918adantll 468 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  C_ 
ran  F )
206, 19ssexd 4122 . . 3  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  e.  _V )
214, 20opabex3d 6089 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) }  e.  _V )
222, 21eqeltrd 2243 1  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   {copab 4042   ran crn 4605  (class class class)co 5842   CCcc 7751    - cmin 8069    shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-shft 10757
This theorem is referenced by:  2shfti  10773  climshftlemg  11243  climshft  11245  climshft2  11247  eftlub  11631
  Copyright terms: Public domain W3C validator