ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex Unicode version

Theorem ovshftex 11245
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )

Proof of Theorem ovshftex
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 11244 . . 3  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
21ancoms 268 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. z ,  w >.  |  (
z  e.  CC  /\  ( z  -  A
) F w ) } )
3 cnex 8084 . . . 4  |-  CC  e.  _V
43a1i 9 . . 3  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  CC  e.  _V )
5 rnexg 4962 . . . . 5  |-  ( F  e.  V  ->  ran  F  e.  _V )
65ad2antrr 488 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  ran  F  e.  _V )
7 vex 2779 . . . . . . . 8  |-  u  e. 
_V
8 breq2 4063 . . . . . . . 8  |-  ( w  =  u  ->  (
( z  -  A
) F w  <->  ( z  -  A ) F u ) )
97, 8elab 2924 . . . . . . 7  |-  ( u  e.  { w  |  ( z  -  A
) F w }  <->  ( z  -  A ) F u )
10 simpr 110 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
11 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  A  e.  CC )
1210, 11subcld 8418 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( z  -  A
)  e.  CC )
13 brelrng 4928 . . . . . . . . . 10  |-  ( ( ( z  -  A
)  e.  CC  /\  u  e.  _V  /\  (
z  -  A ) F u )  ->  u  e.  ran  F )
147, 13mp3an2 1338 . . . . . . . . 9  |-  ( ( ( z  -  A
)  e.  CC  /\  ( z  -  A
) F u )  ->  u  e.  ran  F )
1512, 14sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  z  e.  CC )  /\  ( z  -  A ) F u )  ->  u  e.  ran  F )
1615ex 115 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  -  A ) F u  ->  u  e.  ran  F ) )
179, 16biimtrid 152 . . . . . 6  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( u  e.  {
w  |  ( z  -  A ) F w }  ->  u  e.  ran  F ) )
1817ssrdv 3207 . . . . 5  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  { w  |  ( z  -  A ) F w }  C_  ran  F )
1918adantll 476 . . . 4  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  C_ 
ran  F )
206, 19ssexd 4200 . . 3  |-  ( ( ( F  e.  V  /\  A  e.  CC )  /\  z  e.  CC )  ->  { w  |  ( z  -  A
) F w }  e.  _V )
214, 20opabex3d 6229 . 2  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) }  e.  _V )
222, 21eqeltrd 2284 1  |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776    C_ wss 3174   class class class wbr 4059   {copab 4120   ran crn 4694  (class class class)co 5967   CCcc 7958    - cmin 8278    shift cshi 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-shft 11241
This theorem is referenced by:  2shfti  11257  climshftlemg  11728  climshft  11730  climshft2  11732  eftlub  12116
  Copyright terms: Public domain W3C validator