Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovshftex | Unicode version |
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.) |
Ref | Expression |
---|---|
ovshftex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfvalg 10782 | . . 3 | |
2 | 1 | ancoms 266 | . 2 |
3 | cnex 7898 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | rnexg 4876 | . . . . 5 | |
6 | 5 | ad2antrr 485 | . . . 4 |
7 | vex 2733 | . . . . . . . 8 | |
8 | breq2 3993 | . . . . . . . 8 | |
9 | 7, 8 | elab 2874 | . . . . . . 7 |
10 | simpr 109 | . . . . . . . . . 10 | |
11 | simpl 108 | . . . . . . . . . 10 | |
12 | 10, 11 | subcld 8230 | . . . . . . . . 9 |
13 | brelrng 4842 | . . . . . . . . . 10 | |
14 | 7, 13 | mp3an2 1320 | . . . . . . . . 9 |
15 | 12, 14 | sylan 281 | . . . . . . . 8 |
16 | 15 | ex 114 | . . . . . . 7 |
17 | 9, 16 | syl5bi 151 | . . . . . 6 |
18 | 17 | ssrdv 3153 | . . . . 5 |
19 | 18 | adantll 473 | . . . 4 |
20 | 6, 19 | ssexd 4129 | . . 3 |
21 | 4, 20 | opabex3d 6100 | . 2 |
22 | 2, 21 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 cvv 2730 wss 3121 class class class wbr 3989 copab 4049 crn 4612 (class class class)co 5853 cc 7772 cmin 8090 cshi 10778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-shft 10779 |
This theorem is referenced by: 2shfti 10795 climshftlemg 11265 climshft 11267 climshft2 11269 eftlub 11653 |
Copyright terms: Public domain | W3C validator |