ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg Unicode version

Theorem breldmg 4869
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem breldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4034 . . . . 5  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21spcegv 2849 . . . 4  |-  ( B  e.  D  ->  ( A R B  ->  E. x  A R x ) )
32imp 124 . . 3  |-  ( ( B  e.  D  /\  A R B )  ->  E. x  A R x )
433adant1 1017 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  E. x  A R x )
5 eldmg 4858 . . 3  |-  ( A  e.  C  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
653ad2ant1 1020 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
74, 6mpbird 167 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980   E.wex 1503    e. wcel 2164   class class class wbr 4030   dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-dm 4670
This theorem is referenced by:  brelrng  4894  releldm  4898  brtposg  6309  shftfvalg  10965  shftfval  10968  geolim2  11658  geoisum1c  11666  ntrivcvgap  11694  eftlub  11836  eflegeo  11847  dvcj  14888  dvrecap  14892  dvef  14906  trilpolemisumle  15598  trilpolemeq1  15600
  Copyright terms: Public domain W3C validator