ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg Unicode version

Theorem breldmg 4872
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem breldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . 5  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21spcegv 2852 . . . 4  |-  ( B  e.  D  ->  ( A R B  ->  E. x  A R x ) )
32imp 124 . . 3  |-  ( ( B  e.  D  /\  A R B )  ->  E. x  A R x )
433adant1 1017 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  E. x  A R x )
5 eldmg 4861 . . 3  |-  ( A  e.  C  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
653ad2ant1 1020 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
74, 6mpbird 167 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980   E.wex 1506    e. wcel 2167   class class class wbr 4033   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  brelrng  4897  releldm  4901  brtposg  6312  shftfvalg  10983  shftfval  10986  geolim2  11677  geoisum1c  11685  ntrivcvgap  11713  eftlub  11855  eflegeo  11866  dvcj  14945  dvrecap  14949  dvef  14963  trilpolemisumle  15682  trilpolemeq1  15684
  Copyright terms: Public domain W3C validator