Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breldmg | Unicode version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
breldmg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3969 | . . . . 5 | |
2 | 1 | spcegv 2800 | . . . 4 |
3 | 2 | imp 123 | . . 3 |
4 | 3 | 3adant1 1000 | . 2 |
5 | eldmg 4780 | . . 3 | |
6 | 5 | 3ad2ant1 1003 | . 2 |
7 | 4, 6 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wex 1472 wcel 2128 class class class wbr 3965 cdm 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-dm 4595 |
This theorem is referenced by: brelrng 4816 releldm 4820 brtposg 6198 shftfvalg 10711 shftfval 10714 geolim2 11402 geoisum1c 11410 ntrivcvgap 11438 eftlub 11580 eflegeo 11591 dvcj 13044 dvrecap 13048 dvef 13059 trilpolemisumle 13580 trilpolemeq1 13582 |
Copyright terms: Public domain | W3C validator |