| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breldmg | Unicode version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| breldmg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 |
. . . . 5
| |
| 2 | 1 | spcegv 2891 |
. . . 4
|
| 3 | 2 | imp 124 |
. . 3
|
| 4 | 3 | 3adant1 1039 |
. 2
|
| 5 | eldmg 4918 |
. . 3
| |
| 6 | 5 | 3ad2ant1 1042 |
. 2
|
| 7 | 4, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: brelrng 4955 releldm 4959 brtposg 6400 shftfvalg 11329 shftfval 11332 geolim2 12023 geoisum1c 12031 ntrivcvgap 12059 eftlub 12201 eflegeo 12212 dvcj 15383 dvrecap 15387 dvef 15401 trilpolemisumle 16406 trilpolemeq1 16408 |
| Copyright terms: Public domain | W3C validator |