ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg Unicode version

Theorem breldmg 4791
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem breldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 3969 . . . . 5  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21spcegv 2800 . . . 4  |-  ( B  e.  D  ->  ( A R B  ->  E. x  A R x ) )
32imp 123 . . 3  |-  ( ( B  e.  D  /\  A R B )  ->  E. x  A R x )
433adant1 1000 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  E. x  A R x )
5 eldmg 4780 . . 3  |-  ( A  e.  C  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
653ad2ant1 1003 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
74, 6mpbird 166 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 963   E.wex 1472    e. wcel 2128   class class class wbr 3965   dom cdm 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-dm 4595
This theorem is referenced by:  brelrng  4816  releldm  4820  brtposg  6198  shftfvalg  10711  shftfval  10714  geolim2  11402  geoisum1c  11410  ntrivcvgap  11438  eftlub  11580  eflegeo  11591  dvcj  13044  dvrecap  13048  dvef  13059  trilpolemisumle  13580  trilpolemeq1  13582
  Copyright terms: Public domain W3C validator