ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg Unicode version

Theorem breldmg 4817
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem breldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . . 5  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21spcegv 2818 . . . 4  |-  ( B  e.  D  ->  ( A R B  ->  E. x  A R x ) )
32imp 123 . . 3  |-  ( ( B  e.  D  /\  A R B )  ->  E. x  A R x )
433adant1 1010 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  E. x  A R x )
5 eldmg 4806 . . 3  |-  ( A  e.  C  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
653ad2ant1 1013 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
74, 6mpbird 166 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 973   E.wex 1485    e. wcel 2141   class class class wbr 3989   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  brelrng  4842  releldm  4846  brtposg  6233  shftfvalg  10782  shftfval  10785  geolim2  11475  geoisum1c  11483  ntrivcvgap  11511  eftlub  11653  eflegeo  11664  dvcj  13467  dvrecap  13471  dvef  13482  trilpolemisumle  14070  trilpolemeq1  14072
  Copyright terms: Public domain W3C validator