Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breldmg | Unicode version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
breldmg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3986 | . . . . 5 | |
2 | 1 | spcegv 2814 | . . . 4 |
3 | 2 | imp 123 | . . 3 |
4 | 3 | 3adant1 1005 | . 2 |
5 | eldmg 4799 | . . 3 | |
6 | 5 | 3ad2ant1 1008 | . 2 |
7 | 4, 6 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wex 1480 wcel 2136 class class class wbr 3982 cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: brelrng 4835 releldm 4839 brtposg 6222 shftfvalg 10760 shftfval 10763 geolim2 11453 geoisum1c 11461 ntrivcvgap 11489 eftlub 11631 eflegeo 11642 dvcj 13313 dvrecap 13317 dvef 13328 trilpolemisumle 13917 trilpolemeq1 13919 |
Copyright terms: Public domain | W3C validator |