ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldmg Unicode version

Theorem breldmg 4885
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem breldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4049 . . . . 5  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21spcegv 2861 . . . 4  |-  ( B  e.  D  ->  ( A R B  ->  E. x  A R x ) )
32imp 124 . . 3  |-  ( ( B  e.  D  /\  A R B )  ->  E. x  A R x )
433adant1 1018 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  E. x  A R x )
5 eldmg 4874 . . 3  |-  ( A  e.  C  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
653ad2ant1 1021 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
74, 6mpbird 167 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981   E.wex 1515    e. wcel 2176   class class class wbr 4045   dom cdm 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-dm 4686
This theorem is referenced by:  brelrng  4910  releldm  4914  brtposg  6342  shftfvalg  11162  shftfval  11165  geolim2  11856  geoisum1c  11864  ntrivcvgap  11892  eftlub  12034  eflegeo  12045  dvcj  15214  dvrecap  15218  dvef  15232  trilpolemisumle  16014  trilpolemeq1  16016
  Copyright terms: Public domain W3C validator