ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructr Unicode version

Theorem isstructr 12693
Description: The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructr  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  F Struct  <. M ,  N >. )

Proof of Theorem isstructr
StepHypRef Expression
1 brinxp2 4730 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
2 df-br 4034 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
31, 2sylbb1 137 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  ->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
43adantr 276 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
5 simpr1 1005 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  Fun  ( F  \  { (/) } ) )
6 simpr2 1006 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  F  e.  V
)
7 df-ov 5925 . . . . . 6  |-  ( M ... N )  =  ( ... `  <. M ,  N >. )
87sseq2i 3210 . . . . 5  |-  ( dom 
F  C_  ( M ... N )  <->  dom  F  C_  ( ... `  <. M ,  N >. ) )
98biimpi 120 . . . 4  |-  ( dom 
F  C_  ( M ... N )  ->  dom  F 
C_  ( ... `  <. M ,  N >. )
)
1093ad2ant3 1022 . . 3  |-  ( ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) )  ->  dom  F  C_  ( ... ` 
<. M ,  N >. ) )
1110adantl 277 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  dom  F  C_  ( ... `  <. M ,  N >. ) )
12 isstruct2r 12689 . 2  |-  ( ( ( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } ) )  /\  ( F  e.  V  /\  dom  F  C_  ( ... ` 
<. M ,  N >. ) ) )  ->  F Struct  <. M ,  N >. )
134, 5, 6, 11, 12syl22anc 1250 1  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  V  /\  dom  F  C_  ( M ... N ) ) )  ->  F Struct  <. M ,  N >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167    \ cdif 3154    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   <.cop 3625   class class class wbr 4033    X. cxp 4661   dom cdm 4663   Fun wfun 5252   ` cfv 5258  (class class class)co 5922    <_ cle 8062   NNcn 8990   ...cfz 10083   Struct cstr 12674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-struct 12680
This theorem is referenced by:  strleund  12781  strleun  12782  strext  12783  strle1g  12784
  Copyright terms: Public domain W3C validator