| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isstructr | Unicode version | ||
| Description: The property of being a
structure with components in |
| Ref | Expression |
|---|---|
| isstructr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 4763 |
. . . 4
| |
| 2 | df-br 4063 |
. . . 4
| |
| 3 | 1, 2 | sylbb1 137 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | simpr1 1008 |
. 2
| |
| 6 | simpr2 1009 |
. 2
| |
| 7 | df-ov 5977 |
. . . . . 6
| |
| 8 | 7 | sseq2i 3231 |
. . . . 5
|
| 9 | 8 | biimpi 120 |
. . . 4
|
| 10 | 9 | 3ad2ant3 1025 |
. . 3
|
| 11 | 10 | adantl 277 |
. 2
|
| 12 | isstruct2r 13009 |
. 2
| |
| 13 | 4, 5, 6, 11, 12 | syl22anc 1253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-struct 13000 |
| This theorem is referenced by: strleund 13102 strleun 13103 strext 13104 strle1g 13105 |
| Copyright terms: Public domain | W3C validator |