Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isstructr | Unicode version |
Description: The property of being a structure with components in . (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstructr | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 4676 | . . . 4 | |
2 | df-br 3988 | . . . 4 | |
3 | 1, 2 | sylbb1 136 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | simpr1 998 | . 2 | |
6 | simpr2 999 | . 2 | |
7 | df-ov 5853 | . . . . . 6 | |
8 | 7 | sseq2i 3174 | . . . . 5 |
9 | 8 | biimpi 119 | . . . 4 |
10 | 9 | 3ad2ant3 1015 | . . 3 |
11 | 10 | adantl 275 | . 2 |
12 | isstruct2r 12414 | . 2 Struct | |
13 | 4, 5, 6, 11, 12 | syl22anc 1234 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wcel 2141 cdif 3118 cin 3120 wss 3121 c0 3414 csn 3581 cop 3584 class class class wbr 3987 cxp 4607 cdm 4609 wfun 5190 cfv 5196 (class class class)co 5850 cle 7942 cn 8865 cfz 9952 Struct cstr 12399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5853 df-struct 12405 |
This theorem is referenced by: strleund 12493 strleun 12494 strle1g 12495 |
Copyright terms: Public domain | W3C validator |