![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brinxp2 | GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brinxp2 | ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 4057 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵)) | |
2 | ancom 266 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵)) | |
3 | brxp 4659 | . . . 4 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 3 | anbi1i 458 | . . 3 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) |
5 | df-3an 980 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
6 | 4, 5 | bitr4i 187 | . 2 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
7 | 1, 2, 6 | 3bitri 206 | 1 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 ∩ cin 3130 class class class wbr 4005 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 |
This theorem is referenced by: brinxp 4696 fncnv 5284 erinxp 6611 isstructim 12478 isstructr 12479 |
Copyright terms: Public domain | W3C validator |