ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 GIF version

Theorem brinxp2 4785
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4135 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
2 ancom 266 . 2 ((𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵))
3 brxp 4749 . . . 4 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
43anbi1i 458 . . 3 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
5 df-3an 1004 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
64, 5bitr4i 187 . 2 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
71, 2, 63bitri 206 1 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002  wcel 2200  cin 3196   class class class wbr 4082   × cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724
This theorem is referenced by:  brinxp  4786  fncnv  5386  erinxp  6754  isstructim  13041  isstructr  13042
  Copyright terms: Public domain W3C validator