ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 GIF version

Theorem brinxp2 4726
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4081 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
2 ancom 266 . 2 ((𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵))
3 brxp 4690 . . . 4 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
43anbi1i 458 . . 3 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
5 df-3an 982 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
64, 5bitr4i 187 . 2 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
71, 2, 63bitri 206 1 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980  wcel 2164  cin 3152   class class class wbr 4029   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665
This theorem is referenced by:  brinxp  4727  fncnv  5320  erinxp  6663  isstructim  12632  isstructr  12633
  Copyright terms: Public domain W3C validator