Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brinxp2 | GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brinxp2 | ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 4041 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵)) | |
2 | ancom 264 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵)) | |
3 | brxp 4642 | . . . 4 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 3 | anbi1i 455 | . . 3 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) |
5 | df-3an 975 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
6 | 4, 5 | bitr4i 186 | . 2 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
7 | 1, 2, 6 | 3bitri 205 | 1 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 ∩ cin 3120 class class class wbr 3989 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 |
This theorem is referenced by: brinxp 4679 fncnv 5264 erinxp 6587 isstructim 12430 isstructr 12431 |
Copyright terms: Public domain | W3C validator |