ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 GIF version

Theorem brinxp2 4740
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4095 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
2 ancom 266 . 2 ((𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵))
3 brxp 4704 . . . 4 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
43anbi1i 458 . . 3 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
5 df-3an 982 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
64, 5bitr4i 187 . 2 ((𝐴(𝐶 × 𝐷)𝐵𝐴𝑅𝐵) ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
71, 2, 63bitri 206 1 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980  wcel 2175  cin 3164   class class class wbr 4043   × cxp 4671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679
This theorem is referenced by:  brinxp  4741  fncnv  5334  erinxp  6686  isstructim  12765  isstructr  12766
  Copyright terms: Public domain W3C validator