ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasssrg Unicode version

Theorem mulasssrg 7748
Description: Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulasssrg  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  B
)  .R  C )  =  ( A  .R  ( B  .R  C ) ) )

Proof of Theorem mulasssrg
Dummy variables  f  g  h  r  s  t  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7717 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 mulsrpr 7736 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
3 mulsrpr 7736 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( z  .P.  v
)  +P.  ( w  .P.  u ) ) ,  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) >. ]  ~R  )
4 mulsrpr 7736 . 2  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  .P.  v
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  .P.  u ) ) ,  ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  .P.  u )  +P.  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  .P.  v )
) >. ]  ~R  )
5 mulsrpr 7736 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P.  /\  ( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( ( z  .P.  v
)  +P.  ( w  .P.  u ) ) ,  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( x  .P.  ( ( z  .P.  v )  +P.  ( w  .P.  u
) ) )  +P.  ( y  .P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ) ) ,  ( ( x  .P.  ( ( z  .P.  u )  +P.  ( w  .P.  v ) ) )  +P.  ( y  .P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) ) ) >. ]  ~R  )
6 mulclpr 7562 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
76ad2ant2r 509 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  z )  e.  P. )
8 mulclpr 7562 . . . . 5  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
98ad2ant2l 508 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  w )  e.  P. )
10 addclpr 7527 . . . 4  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
117, 9, 10syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
12 mulclpr 7562 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
1312ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  w )  e.  P. )
14 mulclpr 7562 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
1514ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  z )  e.  P. )
16 addclpr 7527 . . . 4  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1713, 15, 16syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1811, 17jca 306 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
19 mulclpr 7562 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
2019ad2ant2r 509 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
21 mulclpr 7562 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
2221ad2ant2l 508 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  .P.  u )  e.  P. )
23 addclpr 7527 . . . 4  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
2420, 22, 23syl2anc 411 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
25 mulclpr 7562 . . . . 5  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
2625ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  .P.  u )  e.  P. )
27 mulclpr 7562 . . . . 5  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
2827ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  .P.  v )  e.  P. )
29 addclpr 7527 . . . 4  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
3026, 28, 29syl2anc 411 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
3124, 30jca 306 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( z  .P.  v
)  +P.  ( w  .P.  u ) )  e. 
P.  /\  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. ) )
32 mulcomprg 7570 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  =  ( g  .P.  f ) )
3332adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  .P.  g
)  =  ( g  .P.  f ) )
34 distrprg 7578 . . . . . 6  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  .P.  ( s  +P.  t ) )  =  ( ( r  .P.  s )  +P.  (
r  .P.  t )
) )
3534adantl 277 . . . . 5  |-  ( ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  /\  ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )
)  ->  ( r  .P.  ( s  +P.  t
) )  =  ( ( r  .P.  s
)  +P.  ( r  .P.  t ) ) )
36 simp1 997 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  f  e.  P. )
37 simp2 998 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  g  e.  P. )
38 simp3 999 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  h  e.  P. )
39 addclpr 7527 . . . . . 6  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  e.  P. )
4039adantl 277 . . . . 5  |-  ( ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  /\  ( r  e.  P.  /\  s  e.  P. )
)  ->  ( r  +P.  s )  e.  P. )
41 mulcomprg 7570 . . . . . 6  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  .P.  s
)  =  ( s  .P.  r ) )
4241adantl 277 . . . . 5  |-  ( ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  /\  ( r  e.  P.  /\  s  e.  P. )
)  ->  ( r  .P.  s )  =  ( s  .P.  r ) )
4335, 36, 37, 38, 40, 42caovdir2d 6045 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  .P.  h )  =  ( ( f  .P.  h )  +P.  ( g  .P.  h
) ) )
4443adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  +P.  g
)  .P.  h )  =  ( ( f  .P.  h )  +P.  ( g  .P.  h
) ) )
45 mulassprg 7571 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  .P.  g
)  .P.  h )  =  ( f  .P.  ( g  .P.  h
) ) )
4645adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  .P.  g
)  .P.  h )  =  ( f  .P.  ( g  .P.  h
) ) )
47 mulclpr 7562 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  e.  P. )
4847adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  .P.  g
)  e.  P. )
49 simp1l 1021 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  x  e.  P. )
50 simp1r 1022 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  y  e.  P. )
51 simp2l 1023 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  z  e.  P. )
52 simp2r 1024 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  w  e.  P. )
53 simp3l 1025 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  v  e.  P. )
54 simp3r 1026 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  u  e.  P. )
55 addcomprg 7568 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
5655adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
57 addassprg 7569 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
5857adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
59 addclpr 7527 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
6059adantl 277 . . 3  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  e.  P. )
6133, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 58, 60caovlem2d 6061 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  .P.  v )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  .P.  u
) )  =  ( ( x  .P.  (
( z  .P.  v
)  +P.  ( w  .P.  u ) ) )  +P.  ( y  .P.  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ) ) )
6233, 44, 46, 48, 49, 50, 51, 52, 54, 53, 56, 58, 60caovlem2d 6061 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  .P.  u )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  .P.  v
) )  =  ( ( x  .P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  +P.  ( y  .P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) ) ) )
631, 2, 3, 4, 5, 18, 31, 61, 62ecoviass 6639 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  B
)  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5869   P.cnp 7281    +P. cpp 7283    .P. cmp 7284    ~R cer 7286   R.cnr 7287    .R cmr 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-imp 7459  df-enr 7716  df-nr 7717  df-mr 7719
This theorem is referenced by:  axmulass  7863
  Copyright terms: Public domain W3C validator