ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr Unicode version

Theorem mulgt0sr 7579
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )

Proof of Theorem mulgt0sr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7539 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 4586 . . . 4  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 113 . . 3  |-  ( 0R 
<R  A  ->  A  e. 
R. )
41brel 4586 . . . 4  |-  ( 0R 
<R  B  ->  ( 0R  e.  R.  /\  B  e.  R. ) )
54simprd 113 . . 3  |-  ( 0R 
<R  B  ->  B  e. 
R. )
63, 5anim12i 336 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  -> 
( A  e.  R.  /\  B  e.  R. )
)
7 df-nr 7528 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
8 breq2 3928 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  [ <. x ,  y >. ]  ~R  <->  0R 
<R  A ) )
98anbi1d 460 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. x ,  y >. ]  ~R  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  <->  ( 0R  <R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  ) ) )
10 oveq1 5774 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
1110breq2d 3936 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  ( [ <. x ,  y
>. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  <->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) ) )
129, 11imbi12d 233 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( 0R 
<R  [ <. x ,  y
>. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) )  <-> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )
) ) )
13 breq2 3928 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  [ <. z ,  w >. ]  ~R  <->  0R 
<R  B ) )
1413anbi2d 459 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  ) 
<->  ( 0R  <R  A  /\  0R  <R  B ) ) )
15 oveq2 5775 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
1615breq2d 3936 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )  <->  0R 
<R  ( A  .R  B
) ) )
1714, 16imbi12d 233 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( 0R 
<R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) )  <->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B
) ) ) )
18 gt0srpr 7549 . . . . 5  |-  ( 0R 
<R  [ <. x ,  y
>. ]  ~R  <->  y  <P  x )
19 gt0srpr 7549 . . . . 5  |-  ( 0R 
<R  [ <. z ,  w >. ]  ~R  <->  w  <P  z )
2018, 19anbi12i 455 . . . 4  |-  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  <->  ( y  <P  x  /\  w  <P  z ) )
21 ltexpri 7414 . . . . . . 7  |-  ( y 
<P  x  ->  E. v  e.  P.  ( y  +P.  v )  =  x )
22 ltexpri 7414 . . . . . . . . 9  |-  ( w 
<P  z  ->  E. u  e.  P.  ( w  +P.  u )  =  z )
23 addclpr 7338 . . . . . . . . . . . . . 14  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
2423adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  e.  P. )
25 simplrr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  +P.  v )  =  x )
26 simplr 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  y  e.  P. )
2726ad2antrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  y  e.  P. )
28 simplrl 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  v  e.  P. )
2924, 27, 28caovcld 5917 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  +P.  v )  e.  P. )
3025, 29eqeltrrd 2215 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  x  e.  P. )
31 simplrr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  ->  w  e.  P. )
3231adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  w  e.  P. )
33 mulclpr 7373 . . . . . . . . . . . . . 14  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
3430, 32, 33syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( x  .P.  w )  e.  P. )
35 simplrl 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
z  e.  P. )
3635adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  z  e.  P. )
37 mulclpr 7373 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
3827, 36, 37syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  z )  e.  P. )
3924, 34, 38caovcld 5917 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
40 simprl 520 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  u  e.  P. )
41 mulclpr 7373 . . . . . . . . . . . . 13  |-  ( ( v  e.  P.  /\  u  e.  P. )  ->  ( v  .P.  u
)  e.  P. )
4228, 40, 41syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( v  .P.  u )  e.  P. )
43 ltaddpr 7398 . . . . . . . . . . . 12  |-  ( ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P.  /\  ( v  .P.  u
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )
4439, 42, 43syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )
45 simprr 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( w  +P.  u )  =  z )
46 oveq12 5776 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( y  +P.  v )  .P.  (
w  +P.  u )
)  =  ( x  .P.  z ) )
4746oveq1d 5782 . . . . . . . . . . . . . . 15  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) ) )
4825, 45, 47syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
49 distrprg 7389 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )
5027, 32, 40, 49syl3anc 1216 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  ( w  +P.  u
) )  =  ( ( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
51 oveq2 5775 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  +P.  u )  =  z  ->  (
y  .P.  ( w  +P.  u ) )  =  ( y  .P.  z
) )
5251adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  P.  /\  ( w  +P.  u )  =  z )  -> 
( y  .P.  (
w  +P.  u )
)  =  ( y  .P.  z ) )
5352adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  ( w  +P.  u
) )  =  ( y  .P.  z ) )
5450, 53eqtr3d 2172 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  w )  +P.  ( y  .P.  u
) )  =  ( y  .P.  z ) )
5554oveq1d 5782 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( y  .P.  z
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
56 distrprg 7389 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
) )
5756adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( f  .P.  (
g  +P.  h )
)  =  ( ( f  .P.  g )  +P.  ( f  .P.  h ) ) )
58 mulcomprg 7381 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  =  ( g  .P.  f ) )
5958adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  .P.  g
)  =  ( g  .P.  f ) )
6057, 27, 28, 32, 24, 59caovdir2d 5940 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  w )  =  ( ( y  .P.  w
)  +P.  ( v  .P.  w ) ) )
6157, 27, 28, 40, 24, 59caovdir2d 5940 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  u )  =  ( ( y  .P.  u
)  +P.  ( v  .P.  u ) ) )
6260, 61oveq12d 5785 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  w )  +P.  ( ( y  +P.  v )  .P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) ) )
63 distrprg 7389 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  +P.  v
)  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  =  ( ( ( y  +P.  v )  .P.  w )  +P.  (
( y  +P.  v
)  .P.  u )
) )
6429, 32, 40, 63syl3anc 1216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( ( y  +P.  v )  .P.  w
)  +P.  ( (
y  +P.  v )  .P.  u ) ) )
65 mulclpr 7373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
6627, 32, 65syl2anc 408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  w )  e.  P. )
67 mulclpr 7373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
6827, 40, 67syl2anc 408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  u )  e.  P. )
69 mulclpr 7373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  P.  /\  w  e.  P. )  ->  ( v  .P.  w
)  e.  P. )
7028, 32, 69syl2anc 408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( v  .P.  w )  e.  P. )
71 addcomprg 7379 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
7271adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
73 addassprg 7380 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
7473adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( ( f  +P.  g )  +P.  h
)  =  ( f  +P.  ( g  +P.  h ) ) )
7566, 68, 70, 72, 74, 42, 24caov4d 5948 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) ) )
7662, 64, 753eqtr4d 2180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
y  .P.  u )
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
7770, 38, 42, 72, 74caov12d 5945 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( y  .P.  z
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
7855, 76, 773eqtr4d 2180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
79 oveq1 5774 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +P.  v )  =  x  ->  (
( y  +P.  v
)  .P.  w )  =  ( x  .P.  w ) )
8079adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  P.  /\  ( y  +P.  v
)  =  x )  ->  ( ( y  +P.  v )  .P.  w )  =  ( x  .P.  w ) )
8180ad2antlr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  w )  =  ( x  .P.  w ) )
8260, 81eqtr3d 2172 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  w )  +P.  ( v  .P.  w
) )  =  ( x  .P.  w ) )
8378, 82oveq12d 5785 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) )  +P.  ( x  .P.  w ) ) )
8448, 83eqtr3d 2172 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) )  +P.  ( x  .P.  w ) ) )
85 mulclpr 7373 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
8630, 36, 85syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( x  .P.  z )  e.  P. )
87 addassprg 7380 . . . . . . . . . . . . . . 15  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P.  /\  ( v  .P.  w
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
v  .P.  w )
)  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
8886, 66, 70, 87syl3anc 1216 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
89 addclpr 7338 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
9086, 66, 89syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
91 addcomprg 7379 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( v  .P.  w
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
v  .P.  w )
)  =  ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9290, 70, 91syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9388, 92eqtr3d 2172 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9424, 38, 42caovcld 5917 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  z )  +P.  ( v  .P.  u
) )  e.  P. )
95 addassprg 7380 . . . . . . . . . . . . . . 15  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( x  .P.  w )  e.  P.  /\  (
( y  .P.  z
)  +P.  ( v  .P.  u ) )  e. 
P. )  ->  (
( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) ) )
9670, 34, 94, 95syl3anc 1216 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( x  .P.  w ) )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) ) )
9770, 94, 34, 72, 74caov32d 5944 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
98 addassprg 7380 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P.  /\  ( v  .P.  u
)  e.  P. )  ->  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  =  ( ( x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
9934, 38, 42, 98syl3anc 1216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
10099oveq2d 5783 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) ) )
10196, 97, 1003eqtr4d 2180 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10284, 93, 1013eqtr3d 2178 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10324, 39, 42caovcld 5917 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  e.  P. )
104 addcanprg 7417 . . . . . . . . . . . . 13  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  e.  P. )  ->  ( ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  -> 
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  =  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10570, 90, 103, 104syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) )  =  ( ( v  .P.  w )  +P.  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )  ->  ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) ) )
106102, 105mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )
10744, 106breqtrrd 3951 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
108107rexlimdvaa 2548 . . . . . . . . 9  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
10922, 108syl5 32 . . . . . . . 8  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
( w  <P  z  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
110109rexlimdvaa 2548 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( E. v  e.  P.  (
y  +P.  v )  =  x  ->  ( w 
<P  z  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) )
11121, 110syl5 32 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  <P  x  ->  ( w  <P  z  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) )
112111impd 252 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
113 mulsrpr 7547 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
114113breq2d 3936 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  0R  <R  [
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  ) )
115 gt0srpr 7549 . . . . . 6  |-  ( 0R 
<R  [ <. ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ,  ( ( x  .P.  w
)  +P.  ( y  .P.  z ) ) >. ]  ~R  <->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
116114, 115syl6bb 195 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
117112, 116sylibrd 168 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) ) )
11820, 117syl5bi 151 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  ) ) )
1197, 12, 17, 1182ecoptocl 6510 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) ) )
1206, 119mpcom 36 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   <.cop 3525   class class class wbr 3924  (class class class)co 5767   [cec 6420   P.cnp 7092    +P. cpp 7094    .P. cmp 7095    <P cltp 7096    ~R cer 7097   R.cnr 7098   0Rc0r 7099    .R cmr 7103    <R cltr 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-iltp 7271  df-enr 7527  df-nr 7528  df-mr 7530  df-ltr 7531  df-0r 7532
This theorem is referenced by:  axpre-mulgt0  7688
  Copyright terms: Public domain W3C validator