ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr Unicode version

Theorem mulgt0sr 7965
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )

Proof of Theorem mulgt0sr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7925 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 4771 . . . 4  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 114 . . 3  |-  ( 0R 
<R  A  ->  A  e. 
R. )
41brel 4771 . . . 4  |-  ( 0R 
<R  B  ->  ( 0R  e.  R.  /\  B  e.  R. ) )
54simprd 114 . . 3  |-  ( 0R 
<R  B  ->  B  e. 
R. )
63, 5anim12i 338 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  -> 
( A  e.  R.  /\  B  e.  R. )
)
7 df-nr 7914 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
8 breq2 4087 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  [ <. x ,  y >. ]  ~R  <->  0R 
<R  A ) )
98anbi1d 465 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. x ,  y >. ]  ~R  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  <->  ( 0R  <R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  ) ) )
10 oveq1 6008 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
1110breq2d 4095 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  ( [ <. x ,  y
>. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  <->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) ) )
129, 11imbi12d 234 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( 0R 
<R  [ <. x ,  y
>. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) )  <-> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )
) ) )
13 breq2 4087 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  [ <. z ,  w >. ]  ~R  <->  0R 
<R  B ) )
1413anbi2d 464 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  ) 
<->  ( 0R  <R  A  /\  0R  <R  B ) ) )
15 oveq2 6009 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
1615breq2d 4095 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )  <->  0R 
<R  ( A  .R  B
) ) )
1714, 16imbi12d 234 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( 0R 
<R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) )  <->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B
) ) ) )
18 gt0srpr 7935 . . . . 5  |-  ( 0R 
<R  [ <. x ,  y
>. ]  ~R  <->  y  <P  x )
19 gt0srpr 7935 . . . . 5  |-  ( 0R 
<R  [ <. z ,  w >. ]  ~R  <->  w  <P  z )
2018, 19anbi12i 460 . . . 4  |-  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  <->  ( y  <P  x  /\  w  <P  z ) )
21 ltexpri 7800 . . . . . . 7  |-  ( y 
<P  x  ->  E. v  e.  P.  ( y  +P.  v )  =  x )
22 ltexpri 7800 . . . . . . . . 9  |-  ( w 
<P  z  ->  E. u  e.  P.  ( w  +P.  u )  =  z )
23 addclpr 7724 . . . . . . . . . . . . . 14  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
2423adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  e.  P. )
25 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  +P.  v )  =  x )
26 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  y  e.  P. )
2726ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  y  e.  P. )
28 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  v  e.  P. )
2924, 27, 28caovcld 6159 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  +P.  v )  e.  P. )
3025, 29eqeltrrd 2307 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  x  e.  P. )
31 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  ->  w  e.  P. )
3231adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  w  e.  P. )
33 mulclpr 7759 . . . . . . . . . . . . . 14  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
3430, 32, 33syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( x  .P.  w )  e.  P. )
35 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
z  e.  P. )
3635adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  z  e.  P. )
37 mulclpr 7759 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
3827, 36, 37syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  z )  e.  P. )
3924, 34, 38caovcld 6159 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
40 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  u  e.  P. )
41 mulclpr 7759 . . . . . . . . . . . . 13  |-  ( ( v  e.  P.  /\  u  e.  P. )  ->  ( v  .P.  u
)  e.  P. )
4228, 40, 41syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( v  .P.  u )  e.  P. )
43 ltaddpr 7784 . . . . . . . . . . . 12  |-  ( ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P.  /\  ( v  .P.  u
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )
4439, 42, 43syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )
45 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( w  +P.  u )  =  z )
46 oveq12 6010 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( y  +P.  v )  .P.  (
w  +P.  u )
)  =  ( x  .P.  z ) )
4746oveq1d 6016 . . . . . . . . . . . . . . 15  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) ) )
4825, 45, 47syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
49 distrprg 7775 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )
5027, 32, 40, 49syl3anc 1271 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  ( w  +P.  u
) )  =  ( ( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
51 oveq2 6009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  +P.  u )  =  z  ->  (
y  .P.  ( w  +P.  u ) )  =  ( y  .P.  z
) )
5251adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  P.  /\  ( w  +P.  u )  =  z )  -> 
( y  .P.  (
w  +P.  u )
)  =  ( y  .P.  z ) )
5352adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  ( w  +P.  u
) )  =  ( y  .P.  z ) )
5450, 53eqtr3d 2264 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  w )  +P.  ( y  .P.  u
) )  =  ( y  .P.  z ) )
5554oveq1d 6016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( y  .P.  z
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
56 distrprg 7775 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
) )
5756adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( f  .P.  (
g  +P.  h )
)  =  ( ( f  .P.  g )  +P.  ( f  .P.  h ) ) )
58 mulcomprg 7767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  =  ( g  .P.  f ) )
5958adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  .P.  g
)  =  ( g  .P.  f ) )
6057, 27, 28, 32, 24, 59caovdir2d 6182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  w )  =  ( ( y  .P.  w
)  +P.  ( v  .P.  w ) ) )
6157, 27, 28, 40, 24, 59caovdir2d 6182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  u )  =  ( ( y  .P.  u
)  +P.  ( v  .P.  u ) ) )
6260, 61oveq12d 6019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  w )  +P.  ( ( y  +P.  v )  .P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) ) )
63 distrprg 7775 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  +P.  v
)  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  =  ( ( ( y  +P.  v )  .P.  w )  +P.  (
( y  +P.  v
)  .P.  u )
) )
6429, 32, 40, 63syl3anc 1271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( ( y  +P.  v )  .P.  w
)  +P.  ( (
y  +P.  v )  .P.  u ) ) )
65 mulclpr 7759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
6627, 32, 65syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  w )  e.  P. )
67 mulclpr 7759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
6827, 40, 67syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( y  .P.  u )  e.  P. )
69 mulclpr 7759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  P.  /\  w  e.  P. )  ->  ( v  .P.  w
)  e.  P. )
7028, 32, 69syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( v  .P.  w )  e.  P. )
71 addcomprg 7765 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
7271adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
73 addassprg 7766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
7473adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( ( f  +P.  g )  +P.  h
)  =  ( f  +P.  ( g  +P.  h ) ) )
7566, 68, 70, 72, 74, 42, 24caov4d 6190 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) ) )
7662, 64, 753eqtr4d 2272 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
y  .P.  u )
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
7770, 38, 42, 72, 74caov12d 6187 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( y  .P.  z
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) ) )
7855, 76, 773eqtr4d 2272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  ( w  +P.  u
) )  =  ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
79 oveq1 6008 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +P.  v )  =  x  ->  (
( y  +P.  v
)  .P.  w )  =  ( x  .P.  w ) )
8079adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  P.  /\  ( y  +P.  v
)  =  x )  ->  ( ( y  +P.  v )  .P.  w )  =  ( x  .P.  w ) )
8180ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  +P.  v )  .P.  w )  =  ( x  .P.  w ) )
8260, 81eqtr3d 2264 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  w )  +P.  ( v  .P.  w
) )  =  ( x  .P.  w ) )
8378, 82oveq12d 6019 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) )  +P.  ( x  .P.  w ) ) )
8448, 83eqtr3d 2264 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) )  +P.  ( x  .P.  w ) ) )
85 mulclpr 7759 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
8630, 36, 85syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( x  .P.  z )  e.  P. )
87 addassprg 7766 . . . . . . . . . . . . . . 15  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P.  /\  ( v  .P.  w
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
v  .P.  w )
)  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
8886, 66, 70, 87syl3anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) ) )
89 addclpr 7724 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
9086, 66, 89syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
91 addcomprg 7765 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( v  .P.  w
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
v  .P.  w )
)  =  ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9290, 70, 91syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9388, 92eqtr3d 2264 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
9424, 38, 42caovcld 6159 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
y  .P.  z )  +P.  ( v  .P.  u
) )  e.  P. )
95 addassprg 7766 . . . . . . . . . . . . . . 15  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( x  .P.  w )  e.  P.  /\  (
( y  .P.  z
)  +P.  ( v  .P.  u ) )  e. 
P. )  ->  (
( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) ) )
9670, 34, 94, 95syl3anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( x  .P.  w ) )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) ) )
9770, 94, 34, 72, 74caov32d 6186 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
98 addassprg 7766 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P.  /\  ( v  .P.  u
)  e.  P. )  ->  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  =  ( ( x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
9934, 38, 42, 98syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
10099oveq2d 6017 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) ) )
10196, 97, 1003eqtr4d 2272 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10284, 93, 1013eqtr3d 2270 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10324, 39, 42caovcld 6159 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  e.  P. )
104 addcanprg 7803 . . . . . . . . . . . . 13  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  e.  P. )  ->  ( ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  -> 
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  =  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
10570, 90, 103, 104syl3anc 1271 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) )  =  ( ( v  .P.  w )  +P.  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )  ->  ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) ) )
106102, 105mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) ) )
10744, 106breqtrrd 4111 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  /\  ( u  e.  P.  /\  ( w  +P.  u
)  =  z ) )  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
108107rexlimdvaa 2649 . . . . . . . . 9  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
10922, 108syl5 32 . . . . . . . 8  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )
)  /\  ( v  e.  P.  /\  ( y  +P.  v )  =  x ) )  -> 
( w  <P  z  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
110109rexlimdvaa 2649 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( E. v  e.  P.  (
y  +P.  v )  =  x  ->  ( w 
<P  z  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) )
11121, 110syl5 32 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  <P  x  ->  ( w  <P  z  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) )
112111impd 254 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
113 mulsrpr 7933 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
114113breq2d 4095 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  0R  <R  [
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  ) )
115 gt0srpr 7935 . . . . . 6  |-  ( 0R 
<R  [ <. ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ,  ( ( x  .P.  w
)  +P.  ( y  .P.  z ) ) >. ]  ~R  <->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
116114, 115bitrdi 196 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
117112, 116sylibrd 169 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) ) )
11820, 117biimtrid 152 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  ) ) )
1197, 12, 17, 1182ecoptocl 6770 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) ) )
1206, 119mpcom 36 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   <.cop 3669   class class class wbr 4083  (class class class)co 6001   [cec 6678   P.cnp 7478    +P. cpp 7480    .P. cmp 7481    <P cltp 7482    ~R cer 7483   R.cnr 7484   0Rc0r 7485    .R cmr 7489    <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-imp 7656  df-iltp 7657  df-enr 7913  df-nr 7914  df-mr 7916  df-ltr 7917  df-0r 7918
This theorem is referenced by:  axpre-mulgt0  8074
  Copyright terms: Public domain W3C validator