ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq0 Unicode version

Theorem addcmpblnq0 7219
Description: Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addcmpblnq0  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)

Proof of Theorem addcmpblnq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nndi 6350 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
21adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
3 simplll 507 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  A  e.  om )
4 simprlr 512 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  N. )
5 pinn 7085 . . . . . . . . 9  |-  ( G  e.  N.  ->  G  e.  om )
64, 5syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  om )
7 nnmcl 6345 . . . . . . . 8  |-  ( ( A  e.  om  /\  G  e.  om )  ->  ( A  .o  G
)  e.  om )
83, 6, 7syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( A  .o  G )  e.  om )
9 simpllr 508 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  N. )
10 pinn 7085 . . . . . . . . 9  |-  ( B  e.  N.  ->  B  e.  om )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  om )
12 simprll 511 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  F  e.  om )
13 nnmcl 6345 . . . . . . . 8  |-  ( ( B  e.  om  /\  F  e.  om )  ->  ( B  .o  F
)  e.  om )
1411, 12, 13syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  F )  e.  om )
15 simplrr 510 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  N. )
16 pinn 7085 . . . . . . . . 9  |-  ( D  e.  N.  ->  D  e.  om )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  om )
18 simprrr 514 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  N. )
19 pinn 7085 . . . . . . . . 9  |-  ( S  e.  N.  ->  S  e.  om )
2018, 19syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  om )
21 nnmcl 6345 . . . . . . . 8  |-  ( ( D  e.  om  /\  S  e.  om )  ->  ( D  .o  S
)  e.  om )
2217, 20, 21syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  om )
23 nnacl 6344 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  +o  y
)  e.  om )
2423adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  +o  y )  e.  om )
25 nnmcom 6353 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
2625adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  =  ( y  .o  x ) )
272, 8, 14, 22, 24, 26caovdir2d 5915 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S
) ) ) )
28 nnmass 6351 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
2928adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
30 nnmcl 6345 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  e.  om )
3130adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  e.  om )
323, 6, 17, 26, 29, 20, 31caov4d 5923 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  .o  ( D  .o  S
) )  =  ( ( A  .o  D
)  .o  ( G  .o  S ) ) )
3311, 12, 17, 26, 29, 20, 31caov4d 5923 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  F )  .o  ( D  .o  S
) )  =  ( ( B  .o  D
)  .o  ( F  .o  S ) ) )
3432, 33oveq12d 5760 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S ) ) )  =  ( ( ( A  .o  D
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
3527, 34eqtrd 2150 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
36 oveq1 5749 . . . . . 6  |-  ( ( A  .o  D )  =  ( B  .o  C )  ->  (
( A  .o  D
)  .o  ( G  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  S
) ) )
37 oveq2 5750 . . . . . 6  |-  ( ( F  .o  S )  =  ( G  .o  R )  ->  (
( B  .o  D
)  .o  ( F  .o  S ) )  =  ( ( B  .o  D )  .o  ( G  .o  R
) ) )
3836, 37oveqan12d 5761 . . . . 5  |-  ( ( ( A  .o  D
)  =  ( B  .o  C )  /\  ( F  .o  S
)  =  ( G  .o  R ) )  ->  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
3935, 38sylan9eq 2170 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S
) )  +o  (
( B  .o  D
)  .o  ( G  .o  R ) ) ) )
40 nnmcl 6345 . . . . . . . 8  |-  ( ( B  e.  om  /\  G  e.  om )  ->  ( B  .o  G
)  e.  om )
4111, 6, 40syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  om )
42 simplrl 509 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  C  e.  om )
43 nnmcl 6345 . . . . . . . 8  |-  ( ( C  e.  om  /\  S  e.  om )  ->  ( C  .o  S
)  e.  om )
4442, 20, 43syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( C  .o  S )  e.  om )
45 simprrl 513 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  R  e.  om )
46 nnmcl 6345 . . . . . . . 8  |-  ( ( D  e.  om  /\  R  e.  om )  ->  ( D  .o  R
)  e.  om )
4717, 45, 46syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  R )  e.  om )
48 nndi 6350 . . . . . . 7  |-  ( ( ( B  .o  G
)  e.  om  /\  ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
4941, 44, 47, 48syl3anc 1201 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
5011, 6, 42, 26, 29, 20, 31caov4d 5923 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( C  .o  S
) )  =  ( ( B  .o  C
)  .o  ( G  .o  S ) ) )
5111, 6, 17, 26, 29, 45, 31caov4d 5923 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( D  .o  R
) )  =  ( ( B  .o  D
)  .o  ( G  .o  R ) ) )
5250, 51oveq12d 5760 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( B  .o  G )  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5349, 52eqtrd 2150 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5453adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( B  .o  G
)  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R ) ) ) )
5539, 54eqtr4d 2153 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) )
56 nnacl 6344 . . . . . 6  |-  ( ( ( A  .o  G
)  e.  om  /\  ( B  .o  F
)  e.  om )  ->  ( ( A  .o  G )  +o  ( B  .o  F ) )  e.  om )
578, 14, 56syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om )
58 mulpiord 7093 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  =  ( B  .o  G ) )
59 mulclpi 7104 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
6058, 59eqeltrrd 2195 . . . . . . 7  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .o  G
)  e.  N. )
6160ad2ant2l 499 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. )
)  ->  ( B  .o  G )  e.  N. )
6261ad2ant2r 500 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  N. )
63 nnacl 6344 . . . . . 6  |-  ( ( ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( C  .o  S )  +o  ( D  .o  R ) )  e.  om )
6444, 47, 63syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om )
65 mulpiord 7093 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  =  ( D  .o  S ) )
66 mulclpi 7104 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
6765, 66eqeltrrd 2195 . . . . . . 7  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .o  S
)  e.  N. )
6867ad2ant2l 499 . . . . . 6  |-  ( ( ( C  e.  om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. )
)  ->  ( D  .o  S )  e.  N. )
6968ad2ant2l 499 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  N. )
70 enq0breq 7212 . . . . 5  |-  ( ( ( ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om  /\  ( B  .o  G
)  e.  N. )  /\  ( ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om  /\  ( D  .o  S
)  e.  N. )
)  ->  ( <. ( ( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7157, 62, 64, 69, 70syl22anc 1202 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7271adantr 274 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  ( <. ( ( A  .o  G )  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7355, 72mpbird 166 . 2  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
7473ex 114 1  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   <.cop 3500   class class class wbr 3899   omcom 4474  (class class class)co 5742    +o coa 6278    .o comu 6279   N.cnpi 7048    .N cmi 7050   ~Q0 ceq0 7062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-ni 7080  df-mi 7082  df-enq0 7200
This theorem is referenced by:  addnq0mo  7223
  Copyright terms: Public domain W3C validator