ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq0 Unicode version

Theorem addcmpblnq0 7563
Description: Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addcmpblnq0  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)

Proof of Theorem addcmpblnq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nndi 6579 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
21adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
3 simplll 533 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  A  e.  om )
4 simprlr 538 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  N. )
5 pinn 7429 . . . . . . . . 9  |-  ( G  e.  N.  ->  G  e.  om )
64, 5syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  om )
7 nnmcl 6574 . . . . . . . 8  |-  ( ( A  e.  om  /\  G  e.  om )  ->  ( A  .o  G
)  e.  om )
83, 6, 7syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( A  .o  G )  e.  om )
9 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  N. )
10 pinn 7429 . . . . . . . . 9  |-  ( B  e.  N.  ->  B  e.  om )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  om )
12 simprll 537 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  F  e.  om )
13 nnmcl 6574 . . . . . . . 8  |-  ( ( B  e.  om  /\  F  e.  om )  ->  ( B  .o  F
)  e.  om )
1411, 12, 13syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  F )  e.  om )
15 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  N. )
16 pinn 7429 . . . . . . . . 9  |-  ( D  e.  N.  ->  D  e.  om )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  om )
18 simprrr 540 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  N. )
19 pinn 7429 . . . . . . . . 9  |-  ( S  e.  N.  ->  S  e.  om )
2018, 19syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  om )
21 nnmcl 6574 . . . . . . . 8  |-  ( ( D  e.  om  /\  S  e.  om )  ->  ( D  .o  S
)  e.  om )
2217, 20, 21syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  om )
23 nnacl 6573 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  +o  y
)  e.  om )
2423adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  +o  y )  e.  om )
25 nnmcom 6582 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
2625adantl 277 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  =  ( y  .o  x ) )
272, 8, 14, 22, 24, 26caovdir2d 6130 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S
) ) ) )
28 nnmass 6580 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
2928adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
30 nnmcl 6574 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  e.  om )
3130adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  e.  om )
323, 6, 17, 26, 29, 20, 31caov4d 6138 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  .o  ( D  .o  S
) )  =  ( ( A  .o  D
)  .o  ( G  .o  S ) ) )
3311, 12, 17, 26, 29, 20, 31caov4d 6138 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  F )  .o  ( D  .o  S
) )  =  ( ( B  .o  D
)  .o  ( F  .o  S ) ) )
3432, 33oveq12d 5969 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S ) ) )  =  ( ( ( A  .o  D
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
3527, 34eqtrd 2239 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
36 oveq1 5958 . . . . . 6  |-  ( ( A  .o  D )  =  ( B  .o  C )  ->  (
( A  .o  D
)  .o  ( G  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  S
) ) )
37 oveq2 5959 . . . . . 6  |-  ( ( F  .o  S )  =  ( G  .o  R )  ->  (
( B  .o  D
)  .o  ( F  .o  S ) )  =  ( ( B  .o  D )  .o  ( G  .o  R
) ) )
3836, 37oveqan12d 5970 . . . . 5  |-  ( ( ( A  .o  D
)  =  ( B  .o  C )  /\  ( F  .o  S
)  =  ( G  .o  R ) )  ->  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
3935, 38sylan9eq 2259 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S
) )  +o  (
( B  .o  D
)  .o  ( G  .o  R ) ) ) )
40 nnmcl 6574 . . . . . . . 8  |-  ( ( B  e.  om  /\  G  e.  om )  ->  ( B  .o  G
)  e.  om )
4111, 6, 40syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  om )
42 simplrl 535 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  C  e.  om )
43 nnmcl 6574 . . . . . . . 8  |-  ( ( C  e.  om  /\  S  e.  om )  ->  ( C  .o  S
)  e.  om )
4442, 20, 43syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( C  .o  S )  e.  om )
45 simprrl 539 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  R  e.  om )
46 nnmcl 6574 . . . . . . . 8  |-  ( ( D  e.  om  /\  R  e.  om )  ->  ( D  .o  R
)  e.  om )
4717, 45, 46syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  R )  e.  om )
48 nndi 6579 . . . . . . 7  |-  ( ( ( B  .o  G
)  e.  om  /\  ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
4941, 44, 47, 48syl3anc 1250 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
5011, 6, 42, 26, 29, 20, 31caov4d 6138 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( C  .o  S
) )  =  ( ( B  .o  C
)  .o  ( G  .o  S ) ) )
5111, 6, 17, 26, 29, 45, 31caov4d 6138 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( D  .o  R
) )  =  ( ( B  .o  D
)  .o  ( G  .o  R ) ) )
5250, 51oveq12d 5969 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( B  .o  G )  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5349, 52eqtrd 2239 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5453adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( B  .o  G
)  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R ) ) ) )
5539, 54eqtr4d 2242 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) )
56 nnacl 6573 . . . . . 6  |-  ( ( ( A  .o  G
)  e.  om  /\  ( B  .o  F
)  e.  om )  ->  ( ( A  .o  G )  +o  ( B  .o  F ) )  e.  om )
578, 14, 56syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om )
58 mulpiord 7437 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  =  ( B  .o  G ) )
59 mulclpi 7448 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
6058, 59eqeltrrd 2284 . . . . . . 7  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .o  G
)  e.  N. )
6160ad2ant2l 508 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. )
)  ->  ( B  .o  G )  e.  N. )
6261ad2ant2r 509 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  N. )
63 nnacl 6573 . . . . . 6  |-  ( ( ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( C  .o  S )  +o  ( D  .o  R ) )  e.  om )
6444, 47, 63syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om )
65 mulpiord 7437 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  =  ( D  .o  S ) )
66 mulclpi 7448 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
6765, 66eqeltrrd 2284 . . . . . . 7  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .o  S
)  e.  N. )
6867ad2ant2l 508 . . . . . 6  |-  ( ( ( C  e.  om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. )
)  ->  ( D  .o  S )  e.  N. )
6968ad2ant2l 508 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  N. )
70 enq0breq 7556 . . . . 5  |-  ( ( ( ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om  /\  ( B  .o  G
)  e.  N. )  /\  ( ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om  /\  ( D  .o  S
)  e.  N. )
)  ->  ( <. ( ( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7157, 62, 64, 69, 70syl22anc 1251 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7271adantr 276 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  ( <. ( ( A  .o  G )  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7355, 72mpbird 167 . 2  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
7473ex 115 1  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   <.cop 3637   class class class wbr 4047   omcom 4642  (class class class)co 5951    +o coa 6506    .o comu 6507   N.cnpi 7392    .N cmi 7394   ~Q0 ceq0 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-ni 7424  df-mi 7426  df-enq0 7544
This theorem is referenced by:  addnq0mo  7567
  Copyright terms: Public domain W3C validator