| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cmn4 | Unicode version | ||
| Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| cmn4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b |
. 2
| |
| 2 | ablcom.p |
. 2
| |
| 3 | simp1 1021 |
. . 3
| |
| 4 | cmnmnd 13838 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | simp2l 1047 |
. 2
| |
| 7 | simp2r 1048 |
. 2
| |
| 8 | simp3l 1049 |
. 2
| |
| 9 | simp3r 1050 |
. 2
| |
| 10 | 1, 2 | cmncom 13839 |
. . 3
|
| 11 | 3, 7, 8, 10 | syl3anc 1271 |
. 2
|
| 12 | 1, 2, 5, 6, 7, 8, 9, 11 | mnd4g 13462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-cmn 13823 |
| This theorem is referenced by: ablsub4 13850 lmod4 14301 |
| Copyright terms: Public domain | W3C validator |