Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cmn4 | Unicode version |
Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | |
ablcom.p |
Ref | Expression |
---|---|
cmn4 | CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | . 2 | |
2 | ablcom.p | . 2 | |
3 | simp1 997 | . . 3 CMnd CMnd | |
4 | cmnmnd 12900 | . . 3 CMnd | |
5 | 3, 4 | syl 14 | . 2 CMnd |
6 | simp2l 1023 | . 2 CMnd | |
7 | simp2r 1024 | . 2 CMnd | |
8 | simp3l 1025 | . 2 CMnd | |
9 | simp3r 1026 | . 2 CMnd | |
10 | 1, 2 | cmncom 12901 | . . 3 CMnd |
11 | 3, 7, 8, 10 | syl3anc 1238 | . 2 CMnd |
12 | 1, 2, 5, 6, 7, 8, 9, 11 | mnd4g 12695 | 1 CMnd |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmnd 12682 CMndccmn 12884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-cmn 12886 |
This theorem is referenced by: ablsub4 12912 |
Copyright terms: Public domain | W3C validator |