ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmnd GIF version

Theorem cmnmnd 13824
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
cmnmnd (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)

Proof of Theorem cmnmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
31, 2iscmn 13816 . 2 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
43simplbi 274 1 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Mndcmnd 13435  CMndccmn 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322  df-ov 5997  df-cmn 13809
This theorem is referenced by:  cmn32  13827  cmn4  13828  cmn12  13829  cmnmndd  13831  rinvmod  13832  ghmcmn  13850  srgmnd  13916
  Copyright terms: Public domain W3C validator