Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cmnmnd | GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2175 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 12892 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 274 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 Mndcmnd 12682 CMndccmn 12884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-cmn 12886 |
This theorem is referenced by: cmn32 12903 cmn4 12904 cmn12 12905 cmnmndd 12907 rinvmod 12908 srgmnd 12943 |
Copyright terms: Public domain | W3C validator |