| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cmnmnd | GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2206 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 13699 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 274 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 Mndcmnd 13318 CMndccmn 13690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 df-cmn 13692 |
| This theorem is referenced by: cmn32 13710 cmn4 13711 cmn12 13712 cmnmndd 13714 rinvmod 13715 ghmcmn 13733 srgmnd 13799 |
| Copyright terms: Public domain | W3C validator |