ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegex2 Unicode version

Theorem cnegex2 7948
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Distinct variable group:    x, A

Proof of Theorem cnegex2
StepHypRef Expression
1 cnegex 7947 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
2 addcom 7906 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  +  x
)  =  ( x  +  A ) )
32eqeq1d 2148 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( A  +  x )  =  0  <-> 
( x  +  A
)  =  0 ) )
43rexbidva 2434 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  CC  ( A  +  x
)  =  0  <->  E. x  e.  CC  (
x  +  A )  =  0 ) )
51, 4mpbid 146 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417  (class class class)co 5774   CCcc 7625   0cc0 7627    + caddc 7630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7719  ax-1cn 7720  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  addcan  7949
  Copyright terms: Public domain W3C validator