ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegex2 Unicode version

Theorem cnegex2 8200
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Distinct variable group:    x, A

Proof of Theorem cnegex2
StepHypRef Expression
1 cnegex 8199 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
2 addcom 8158 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  +  x
)  =  ( x  +  A ) )
32eqeq1d 2202 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( A  +  x )  =  0  <-> 
( x  +  A
)  =  0 ) )
43rexbidva 2491 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  CC  ( A  +  x
)  =  0  <->  E. x  e.  CC  (
x  +  A )  =  0 ) )
51, 4mpbid 147 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  addcan  8201
  Copyright terms: Public domain W3C validator