ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegex2 Unicode version

Theorem cnegex2 8321
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Distinct variable group:    x, A

Proof of Theorem cnegex2
StepHypRef Expression
1 cnegex 8320 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
2 addcom 8279 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  +  x
)  =  ( x  +  A ) )
32eqeq1d 2238 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( A  +  x )  =  0  <-> 
( x  +  A
)  =  0 ) )
43rexbidva 2527 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  CC  ( A  +  x
)  =  0  <->  E. x  e.  CC  (
x  +  A )  =  0 ) )
51, 4mpbid 147 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509  (class class class)co 6000   CCcc 7993   0cc0 7995    + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  addcan  8322
  Copyright terms: Public domain W3C validator