ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coexg Unicode version

Theorem coexg 5273
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
coexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B
)  e.  _V )

Proof of Theorem coexg
StepHypRef Expression
1 cossxp 5251 . 2  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
2 dmexg 4988 . . 3  |-  ( B  e.  W  ->  dom  B  e.  _V )
3 rnexg 4989 . . 3  |-  ( A  e.  V  ->  ran  A  e.  _V )
4 xpexg 4833 . . 3  |-  ( ( dom  B  e.  _V  /\ 
ran  A  e.  _V )  ->  ( dom  B  X.  ran  A )  e. 
_V )
52, 3, 4syl2anr 290 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( dom  B  X.  ran  A )  e.  _V )
6 ssexg 4223 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  B  X.  ran  A )  /\  ( dom  B  X.  ran  A )  e. 
_V )  ->  ( A  o.  B )  e.  _V )
71, 5, 6sylancr 414 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    C_ wss 3197    X. cxp 4717   dom cdm 4719   ran crn 4720    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730
This theorem is referenced by:  coex  5274  seqf1oglem2  10742  seqf1og  10743  gsumwmhm  13531  gsumfzreidx  13874  gsumfzmhm  13880  znval  14600  znle  14601  znbaslemnn  14603  climcncf  15258
  Copyright terms: Public domain W3C validator