ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coexg Unicode version

Theorem coexg 5246
Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
coexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B
)  e.  _V )

Proof of Theorem coexg
StepHypRef Expression
1 cossxp 5224 . 2  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
2 dmexg 4961 . . 3  |-  ( B  e.  W  ->  dom  B  e.  _V )
3 rnexg 4962 . . 3  |-  ( A  e.  V  ->  ran  A  e.  _V )
4 xpexg 4807 . . 3  |-  ( ( dom  B  e.  _V  /\ 
ran  A  e.  _V )  ->  ( dom  B  X.  ran  A )  e. 
_V )
52, 3, 4syl2anr 290 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( dom  B  X.  ran  A )  e.  _V )
6 ssexg 4199 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  B  X.  ran  A )  /\  ( dom  B  X.  ran  A )  e. 
_V )  ->  ( A  o.  B )  e.  _V )
71, 5, 6sylancr 414 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   _Vcvv 2776    C_ wss 3174    X. cxp 4691   dom cdm 4693   ran crn 4694    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704
This theorem is referenced by:  coex  5247  seqf1oglem2  10702  seqf1og  10703  gsumwmhm  13445  gsumfzreidx  13788  gsumfzmhm  13794  znval  14513  znle  14514  znbaslemnn  14516  climcncf  15171
  Copyright terms: Public domain W3C validator