ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg Unicode version

Theorem lgsfvalg 15515
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfvalg  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2 eleq1 2268 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
3 eqeq1 2212 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
4 oveq1 5953 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
54oveq1d 5961 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
65oveq2d 5962 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
76oveq1d 5961 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
8 id 19 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
97, 8oveq12d 5964 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
109oveq1d 5961 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
113, 10ifbieq2d 3595 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
12 oveq1 5953 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1311, 12oveq12d 5964 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
142, 13ifbieq1d 3593 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
15 simp3 1002 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  M  e.  NN )
16 0zd 9386 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
0  e.  ZZ )
17 1zzd 9401 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
1  e.  ZZ )
18 neg1z 9406 . . . . . . . 8  |-  -u 1  e.  ZZ
1918a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  -u 1  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
21 8nn 9206 . . . . . . . . . . . . . . 15  |-  8  e.  NN
2221a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  8  e.  NN )
2320, 22zmodcld 10492 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
2423nn0zd 9495 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
25 1zzd 9401 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
26 zdceq 9450 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
2724, 25, 26syl2anc 411 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
28 7nn 9205 . . . . . . . . . . . . 13  |-  7  e.  NN
2928nnzi 9395 . . . . . . . . . . . 12  |-  7  e.  ZZ
30 zdceq 9450 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
3124, 29, 30sylancl 413 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
32 dcor 938 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3327, 31, 32sylc 62 . . . . . . . . . 10  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
34 elprg 3653 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3523, 34syl 14 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3635dcbid 840 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3733, 36mpbird 167 . . . . . . . . 9  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
38373ad2ant1 1021 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
4017, 19, 39ifcldcd 3608 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
41 2nn 9200 . . . . . . . 8  |-  2  e.  NN
4241a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
2  e.  NN )
43 simpll1 1039 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  A  e.  ZZ )
44 dvdsdc 12142 . . . . . . 7  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
4542, 43, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  2  ||  A )
4616, 40, 45ifcldcd 3608 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
47 simpll1 1039 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  A  e.  ZZ )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  M  = 
2 )
49 prm2orodd 12481 . . . . . . . . . . . . . 14  |-  ( M  e.  Prime  ->  ( M  =  2  \/  -.  2  ||  M ) )
5049orcomd 731 . . . . . . . . . . . . 13  |-  ( M  e.  Prime  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5150ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5248, 51ecased 1362 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  2  ||  M )
5315ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN )
5453nnnn0d 9350 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN0 )
55 nn0oddm1d2 12253 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  /  2 )  e. 
NN0 ) )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  / 
2 )  e.  NN0 ) )
5752, 56mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( M  -  1 )  / 
2 )  e.  NN0 )
58 zexpcl 10701 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( M  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( M  -  1 )  /  2 ) )  e.  ZZ )
5947, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( A ^
( ( M  - 
1 )  /  2
) )  e.  ZZ )
6059peano2zd 9500 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
6160, 53zmodcld 10492 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  NN0 )
6261nn0zd 9495 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  ZZ )
63 1zzd 9401 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  1  e.  ZZ )
6462, 63zsubcld 9502 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 )  e.  ZZ )
65 simpl3 1005 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  NN )
6665nnzd 9496 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  ZZ )
67 2z 9402 . . . . . 6  |-  2  e.  ZZ
68 zdceq 9450 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  -> DECID  M  =  2 )
6966, 67, 68sylancl 413 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  -> DECID 
M  =  2 )
7046, 64, 69ifcldadc 3600 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) )  e.  ZZ )
71 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  Prime )
72 simpl2 1004 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  N  e.  NN )
7371, 72pccld 12656 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( M  pCnt  N )  e.  NN0 )
74 zexpcl 10701 . . . 4  |-  ( ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) )  e.  ZZ  /\  ( M  pCnt  N )  e.  NN0 )  -> 
( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
7570, 73, 74syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
76 1zzd 9401 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  -.  M  e.  Prime )  ->  1  e.  ZZ )
77 prmdc 12485 . . . 4  |-  ( M  e.  NN  -> DECID  M  e.  Prime )
7815, 77syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  M  e.  Prime )
7975, 76, 78ifcldadc 3600 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 )  e.  ZZ )
801, 14, 15, 79fvmptd3 5675 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   ifcif 3571   {cpr 3634   class class class wbr 4045    |-> cmpt 4106   ` cfv 5272  (class class class)co 5946   0cc0 7927   1c1 7928    + caddc 7930    - cmin 8245   -ucneg 8246    / cdiv 8747   NNcn 9038   2c2 9089   7c7 9094   8c8 9095   NN0cn0 9297   ZZcz 9374    mod cmo 10469   ^cexp 10685    || cdvds 12131   Primecprime 12462    pCnt cpc 12640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463  df-pc 12641
This theorem is referenced by:  lgsval2lem  15520
  Copyright terms: Public domain W3C validator