ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg Unicode version

Theorem lgsfvalg 13700
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfvalg  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2 eleq1 2233 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
3 eqeq1 2177 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
4 oveq1 5860 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
54oveq1d 5868 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
65oveq2d 5869 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
76oveq1d 5868 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
8 id 19 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
97, 8oveq12d 5871 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
109oveq1d 5868 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
113, 10ifbieq2d 3550 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
12 oveq1 5860 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1311, 12oveq12d 5871 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
142, 13ifbieq1d 3548 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
15 simp3 994 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  M  e.  NN )
16 0zd 9224 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
0  e.  ZZ )
17 1zzd 9239 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
1  e.  ZZ )
18 neg1z 9244 . . . . . . . 8  |-  -u 1  e.  ZZ
1918a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  -u 1  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
21 8nn 9045 . . . . . . . . . . . . . . 15  |-  8  e.  NN
2221a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  8  e.  NN )
2320, 22zmodcld 10301 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
2423nn0zd 9332 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
25 1zzd 9239 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
26 zdceq 9287 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
2724, 25, 26syl2anc 409 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
28 7nn 9044 . . . . . . . . . . . . 13  |-  7  e.  NN
2928nnzi 9233 . . . . . . . . . . . 12  |-  7  e.  ZZ
30 zdceq 9287 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
3124, 29, 30sylancl 411 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
32 dcor 930 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3327, 31, 32sylc 62 . . . . . . . . . 10  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
34 elprg 3603 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3523, 34syl 14 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3635dcbid 833 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3733, 36mpbird 166 . . . . . . . . 9  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
38373ad2ant1 1013 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
3938ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
4017, 19, 39ifcldcd 3561 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
41 2nn 9039 . . . . . . . 8  |-  2  e.  NN
4241a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
2  e.  NN )
43 simpll1 1031 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  A  e.  ZZ )
44 dvdsdc 11760 . . . . . . 7  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
4542, 43, 44syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  2  ||  A )
4616, 40, 45ifcldcd 3561 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
47 simpll1 1031 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  A  e.  ZZ )
48 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  M  = 
2 )
49 prm2orodd 12080 . . . . . . . . . . . . . 14  |-  ( M  e.  Prime  ->  ( M  =  2  \/  -.  2  ||  M ) )
5049orcomd 724 . . . . . . . . . . . . 13  |-  ( M  e.  Prime  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5150ad2antlr 486 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5248, 51ecased 1344 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  2  ||  M )
5315ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN )
5453nnnn0d 9188 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN0 )
55 nn0oddm1d2 11868 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  /  2 )  e. 
NN0 ) )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  / 
2 )  e.  NN0 ) )
5752, 56mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( M  -  1 )  / 
2 )  e.  NN0 )
58 zexpcl 10491 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( M  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( M  -  1 )  /  2 ) )  e.  ZZ )
5947, 57, 58syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( A ^
( ( M  - 
1 )  /  2
) )  e.  ZZ )
6059peano2zd 9337 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
6160, 53zmodcld 10301 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  NN0 )
6261nn0zd 9332 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  ZZ )
63 1zzd 9239 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  1  e.  ZZ )
6462, 63zsubcld 9339 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 )  e.  ZZ )
65 simpl3 997 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  NN )
6665nnzd 9333 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  ZZ )
67 2z 9240 . . . . . 6  |-  2  e.  ZZ
68 zdceq 9287 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  -> DECID  M  =  2 )
6966, 67, 68sylancl 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  -> DECID 
M  =  2 )
7046, 64, 69ifcldadc 3555 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) )  e.  ZZ )
71 simpr 109 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  Prime )
72 simpl2 996 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  N  e.  NN )
7371, 72pccld 12254 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( M  pCnt  N )  e.  NN0 )
74 zexpcl 10491 . . . 4  |-  ( ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) )  e.  ZZ  /\  ( M  pCnt  N )  e.  NN0 )  -> 
( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
7570, 73, 74syl2anc 409 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
76 1zzd 9239 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  -.  M  e.  Prime )  ->  1  e.  ZZ )
77 prmdc 12084 . . . 4  |-  ( M  e.  NN  -> DECID  M  e.  Prime )
7815, 77syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  M  e.  Prime )
7975, 76, 78ifcldadc 3555 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 )  e.  ZZ )
801, 14, 15, 79fvmptd3 5589 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   ifcif 3526   {cpr 3584   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   -ucneg 8091    / cdiv 8589   NNcn 8878   2c2 8929   7c7 8934   8c8 8935   NN0cn0 9135   ZZcz 9212    mod cmo 10278   ^cexp 10475    || cdvds 11749   Primecprime 12061    pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  lgsval2lem  13705
  Copyright terms: Public domain W3C validator