| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsfvalg | Unicode version | ||
| Description: Value of the function
|
| Ref | Expression |
|---|---|
| lgsval.1 |
|
| Ref | Expression |
|---|---|
| lgsfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsval.1 |
. 2
| |
| 2 | eleq1 2292 |
. . 3
| |
| 3 | eqeq1 2236 |
. . . . 5
| |
| 4 | oveq1 6008 |
. . . . . . . . . 10
| |
| 5 | 4 | oveq1d 6016 |
. . . . . . . . 9
|
| 6 | 5 | oveq2d 6017 |
. . . . . . . 8
|
| 7 | 6 | oveq1d 6016 |
. . . . . . 7
|
| 8 | id 19 |
. . . . . . 7
| |
| 9 | 7, 8 | oveq12d 6019 |
. . . . . 6
|
| 10 | 9 | oveq1d 6016 |
. . . . 5
|
| 11 | 3, 10 | ifbieq2d 3627 |
. . . 4
|
| 12 | oveq1 6008 |
. . . 4
| |
| 13 | 11, 12 | oveq12d 6019 |
. . 3
|
| 14 | 2, 13 | ifbieq1d 3625 |
. 2
|
| 15 | simp3 1023 |
. 2
| |
| 16 | 0zd 9458 |
. . . . . 6
| |
| 17 | 1zzd 9473 |
. . . . . . 7
| |
| 18 | neg1z 9478 |
. . . . . . . 8
| |
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | id 19 |
. . . . . . . . . . . . . 14
| |
| 21 | 8nn 9278 |
. . . . . . . . . . . . . . 15
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 23 | 20, 22 | zmodcld 10567 |
. . . . . . . . . . . . 13
|
| 24 | 23 | nn0zd 9567 |
. . . . . . . . . . . 12
|
| 25 | 1zzd 9473 |
. . . . . . . . . . . 12
| |
| 26 | zdceq 9522 |
. . . . . . . . . . . 12
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . . . . 11
|
| 28 | 7nn 9277 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | nnzi 9467 |
. . . . . . . . . . . 12
|
| 30 | zdceq 9522 |
. . . . . . . . . . . 12
| |
| 31 | 24, 29, 30 | sylancl 413 |
. . . . . . . . . . 11
|
| 32 | dcor 941 |
. . . . . . . . . . 11
| |
| 33 | 27, 31, 32 | sylc 62 |
. . . . . . . . . 10
|
| 34 | elprg 3686 |
. . . . . . . . . . . 12
| |
| 35 | 23, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | 35 | dcbid 843 |
. . . . . . . . . 10
|
| 37 | 33, 36 | mpbird 167 |
. . . . . . . . 9
|
| 38 | 37 | 3ad2ant1 1042 |
. . . . . . . 8
|
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
|
| 40 | 17, 19, 39 | ifcldcd 3640 |
. . . . . 6
|
| 41 | 2nn 9272 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | simpll1 1060 |
. . . . . . 7
| |
| 44 | dvdsdc 12309 |
. . . . . . 7
| |
| 45 | 42, 43, 44 | syl2anc 411 |
. . . . . 6
|
| 46 | 16, 40, 45 | ifcldcd 3640 |
. . . . 5
|
| 47 | simpll1 1060 |
. . . . . . . . . 10
| |
| 48 | simpr 110 |
. . . . . . . . . . . 12
| |
| 49 | prm2orodd 12648 |
. . . . . . . . . . . . . 14
| |
| 50 | 49 | orcomd 734 |
. . . . . . . . . . . . 13
|
| 51 | 50 | ad2antlr 489 |
. . . . . . . . . . . 12
|
| 52 | 48, 51 | ecased 1383 |
. . . . . . . . . . 11
|
| 53 | 15 | ad2antrr 488 |
. . . . . . . . . . . . 13
|
| 54 | 53 | nnnn0d 9422 |
. . . . . . . . . . . 12
|
| 55 | nn0oddm1d2 12420 |
. . . . . . . . . . . 12
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . . . . 11
|
| 57 | 52, 56 | mpbid 147 |
. . . . . . . . . 10
|
| 58 | zexpcl 10776 |
. . . . . . . . . 10
| |
| 59 | 47, 57, 58 | syl2anc 411 |
. . . . . . . . 9
|
| 60 | 59 | peano2zd 9572 |
. . . . . . . 8
|
| 61 | 60, 53 | zmodcld 10567 |
. . . . . . 7
|
| 62 | 61 | nn0zd 9567 |
. . . . . 6
|
| 63 | 1zzd 9473 |
. . . . . 6
| |
| 64 | 62, 63 | zsubcld 9574 |
. . . . 5
|
| 65 | simpl3 1026 |
. . . . . . 7
| |
| 66 | 65 | nnzd 9568 |
. . . . . 6
|
| 67 | 2z 9474 |
. . . . . 6
| |
| 68 | zdceq 9522 |
. . . . . 6
| |
| 69 | 66, 67, 68 | sylancl 413 |
. . . . 5
|
| 70 | 46, 64, 69 | ifcldadc 3632 |
. . . 4
|
| 71 | simpr 110 |
. . . . 5
| |
| 72 | simpl2 1025 |
. . . . 5
| |
| 73 | 71, 72 | pccld 12823 |
. . . 4
|
| 74 | zexpcl 10776 |
. . . 4
| |
| 75 | 70, 73, 74 | syl2anc 411 |
. . 3
|
| 76 | 1zzd 9473 |
. . 3
| |
| 77 | prmdc 12652 |
. . . 4
| |
| 78 | 15, 77 | syl 14 |
. . 3
|
| 79 | 75, 76, 78 | ifcldadc 3632 |
. 2
|
| 80 | 1, 14, 15, 79 | fvmptd3 5728 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-2o 6563 df-er 6680 df-en 6888 df-fin 6890 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-dvds 12299 df-gcd 12475 df-prm 12630 df-pc 12808 |
| This theorem is referenced by: lgsval2lem 15689 |
| Copyright terms: Public domain | W3C validator |