ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg Unicode version

Theorem lgsfvalg 14867
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfvalg  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2 eleq1 2252 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
3 eqeq1 2196 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
4 oveq1 5903 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
54oveq1d 5911 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
65oveq2d 5912 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
76oveq1d 5911 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
8 id 19 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
97, 8oveq12d 5914 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
109oveq1d 5911 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
113, 10ifbieq2d 3573 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
12 oveq1 5903 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1311, 12oveq12d 5914 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
142, 13ifbieq1d 3571 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
15 simp3 1001 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  M  e.  NN )
16 0zd 9295 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
0  e.  ZZ )
17 1zzd 9310 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
1  e.  ZZ )
18 neg1z 9315 . . . . . . . 8  |-  -u 1  e.  ZZ
1918a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  -u 1  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
21 8nn 9116 . . . . . . . . . . . . . . 15  |-  8  e.  NN
2221a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  8  e.  NN )
2320, 22zmodcld 10376 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
2423nn0zd 9403 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
25 1zzd 9310 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
26 zdceq 9358 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
2724, 25, 26syl2anc 411 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
28 7nn 9115 . . . . . . . . . . . . 13  |-  7  e.  NN
2928nnzi 9304 . . . . . . . . . . . 12  |-  7  e.  ZZ
30 zdceq 9358 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
3124, 29, 30sylancl 413 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
32 dcor 937 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3327, 31, 32sylc 62 . . . . . . . . . 10  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
34 elprg 3627 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3523, 34syl 14 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3635dcbid 839 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3733, 36mpbird 167 . . . . . . . . 9  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
38373ad2ant1 1020 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
4017, 19, 39ifcldcd 3585 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
41 2nn 9110 . . . . . . . 8  |-  2  e.  NN
4241a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
2  e.  NN )
43 simpll1 1038 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  A  e.  ZZ )
44 dvdsdc 11837 . . . . . . 7  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
4542, 43, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  2  ||  A )
4616, 40, 45ifcldcd 3585 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
47 simpll1 1038 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  A  e.  ZZ )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  M  = 
2 )
49 prm2orodd 12158 . . . . . . . . . . . . . 14  |-  ( M  e.  Prime  ->  ( M  =  2  \/  -.  2  ||  M ) )
5049orcomd 730 . . . . . . . . . . . . 13  |-  ( M  e.  Prime  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5150ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5248, 51ecased 1360 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  2  ||  M )
5315ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN )
5453nnnn0d 9259 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN0 )
55 nn0oddm1d2 11946 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  /  2 )  e. 
NN0 ) )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  / 
2 )  e.  NN0 ) )
5752, 56mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( M  -  1 )  / 
2 )  e.  NN0 )
58 zexpcl 10566 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( M  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( M  -  1 )  /  2 ) )  e.  ZZ )
5947, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( A ^
( ( M  - 
1 )  /  2
) )  e.  ZZ )
6059peano2zd 9408 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
6160, 53zmodcld 10376 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  NN0 )
6261nn0zd 9403 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  ZZ )
63 1zzd 9310 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  1  e.  ZZ )
6462, 63zsubcld 9410 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 )  e.  ZZ )
65 simpl3 1004 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  NN )
6665nnzd 9404 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  ZZ )
67 2z 9311 . . . . . 6  |-  2  e.  ZZ
68 zdceq 9358 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  -> DECID  M  =  2 )
6966, 67, 68sylancl 413 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  -> DECID 
M  =  2 )
7046, 64, 69ifcldadc 3578 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) )  e.  ZZ )
71 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  Prime )
72 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  N  e.  NN )
7371, 72pccld 12332 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( M  pCnt  N )  e.  NN0 )
74 zexpcl 10566 . . . 4  |-  ( ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) )  e.  ZZ  /\  ( M  pCnt  N )  e.  NN0 )  -> 
( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
7570, 73, 74syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
76 1zzd 9310 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  -.  M  e.  Prime )  ->  1  e.  ZZ )
77 prmdc 12162 . . . 4  |-  ( M  e.  NN  -> DECID  M  e.  Prime )
7815, 77syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  M  e.  Prime )
7975, 76, 78ifcldadc 3578 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 )  e.  ZZ )
801, 14, 15, 79fvmptd3 5630 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2160   ifcif 3549   {cpr 3608   class class class wbr 4018    |-> cmpt 4079   ` cfv 5235  (class class class)co 5896   0cc0 7841   1c1 7842    + caddc 7844    - cmin 8158   -ucneg 8159    / cdiv 8659   NNcn 8949   2c2 9000   7c7 9005   8c8 9006   NN0cn0 9206   ZZcz 9283    mod cmo 10353   ^cexp 10550    || cdvds 11826   Primecprime 12139    pCnt cpc 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-1o 6441  df-2o 6442  df-er 6559  df-en 6767  df-fin 6769  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-gcd 11976  df-prm 12140  df-pc 12317
This theorem is referenced by:  lgsval2lem  14872
  Copyright terms: Public domain W3C validator