ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg Unicode version

Theorem lgsfvalg 14445
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfvalg  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2 eleq1 2240 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
3 eqeq1 2184 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
4 oveq1 5884 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
54oveq1d 5892 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
65oveq2d 5893 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
76oveq1d 5892 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
8 id 19 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
97, 8oveq12d 5895 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
109oveq1d 5892 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
113, 10ifbieq2d 3560 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
12 oveq1 5884 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1311, 12oveq12d 5895 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
142, 13ifbieq1d 3558 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
15 simp3 999 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  M  e.  NN )
16 0zd 9267 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
0  e.  ZZ )
17 1zzd 9282 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
1  e.  ZZ )
18 neg1z 9287 . . . . . . . 8  |-  -u 1  e.  ZZ
1918a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  -u 1  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
21 8nn 9088 . . . . . . . . . . . . . . 15  |-  8  e.  NN
2221a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  8  e.  NN )
2320, 22zmodcld 10347 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
2423nn0zd 9375 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
25 1zzd 9282 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
26 zdceq 9330 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
2724, 25, 26syl2anc 411 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
28 7nn 9087 . . . . . . . . . . . . 13  |-  7  e.  NN
2928nnzi 9276 . . . . . . . . . . . 12  |-  7  e.  ZZ
30 zdceq 9330 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
3124, 29, 30sylancl 413 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
32 dcor 935 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3327, 31, 32sylc 62 . . . . . . . . . 10  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
34 elprg 3614 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3523, 34syl 14 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3635dcbid 838 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3733, 36mpbird 167 . . . . . . . . 9  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
38373ad2ant1 1018 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
4017, 19, 39ifcldcd 3572 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
41 2nn 9082 . . . . . . . 8  |-  2  e.  NN
4241a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
2  e.  NN )
43 simpll1 1036 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  A  e.  ZZ )
44 dvdsdc 11807 . . . . . . 7  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
4542, 43, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  2  ||  A )
4616, 40, 45ifcldcd 3572 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
47 simpll1 1036 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  A  e.  ZZ )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  M  = 
2 )
49 prm2orodd 12128 . . . . . . . . . . . . . 14  |-  ( M  e.  Prime  ->  ( M  =  2  \/  -.  2  ||  M ) )
5049orcomd 729 . . . . . . . . . . . . 13  |-  ( M  e.  Prime  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5150ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5248, 51ecased 1349 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  2  ||  M )
5315ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN )
5453nnnn0d 9231 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN0 )
55 nn0oddm1d2 11916 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  /  2 )  e. 
NN0 ) )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  / 
2 )  e.  NN0 ) )
5752, 56mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( M  -  1 )  / 
2 )  e.  NN0 )
58 zexpcl 10537 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( M  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( M  -  1 )  /  2 ) )  e.  ZZ )
5947, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( A ^
( ( M  - 
1 )  /  2
) )  e.  ZZ )
6059peano2zd 9380 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
6160, 53zmodcld 10347 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  NN0 )
6261nn0zd 9375 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  ZZ )
63 1zzd 9282 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  1  e.  ZZ )
6462, 63zsubcld 9382 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 )  e.  ZZ )
65 simpl3 1002 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  NN )
6665nnzd 9376 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  ZZ )
67 2z 9283 . . . . . 6  |-  2  e.  ZZ
68 zdceq 9330 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  -> DECID  M  =  2 )
6966, 67, 68sylancl 413 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  -> DECID 
M  =  2 )
7046, 64, 69ifcldadc 3565 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) )  e.  ZZ )
71 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  Prime )
72 simpl2 1001 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  N  e.  NN )
7371, 72pccld 12302 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( M  pCnt  N )  e.  NN0 )
74 zexpcl 10537 . . . 4  |-  ( ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) )  e.  ZZ  /\  ( M  pCnt  N )  e.  NN0 )  -> 
( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
7570, 73, 74syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
76 1zzd 9282 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  -.  M  e.  Prime )  ->  1  e.  ZZ )
77 prmdc 12132 . . . 4  |-  ( M  e.  NN  -> DECID  M  e.  Prime )
7815, 77syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  M  e.  Prime )
7975, 76, 78ifcldadc 3565 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 )  e.  ZZ )
801, 14, 15, 79fvmptd3 5611 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   ifcif 3536   {cpr 3595   class class class wbr 4005    |-> cmpt 4066   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    - cmin 8130   -ucneg 8131    / cdiv 8631   NNcn 8921   2c2 8972   7c7 8977   8c8 8978   NN0cn0 9178   ZZcz 9255    mod cmo 10324   ^cexp 10521    || cdvds 11796   Primecprime 12109    pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by:  lgsval2lem  14450
  Copyright terms: Public domain W3C validator