ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfvalg Unicode version

Theorem lgsfvalg 15354
Description: Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsfvalg  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Distinct variable groups:    A, n    n, M    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsfvalg
StepHypRef Expression
1 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
2 eleq1 2259 . . 3  |-  ( n  =  M  ->  (
n  e.  Prime  <->  M  e.  Prime ) )
3 eqeq1 2203 . . . . 5  |-  ( n  =  M  ->  (
n  =  2  <->  M  =  2 ) )
4 oveq1 5932 . . . . . . . . . 10  |-  ( n  =  M  ->  (
n  -  1 )  =  ( M  - 
1 ) )
54oveq1d 5940 . . . . . . . . 9  |-  ( n  =  M  ->  (
( n  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
65oveq2d 5941 . . . . . . . 8  |-  ( n  =  M  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( M  -  1 )  /  2 ) ) )
76oveq1d 5940 . . . . . . 7  |-  ( n  =  M  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 ) )
8 id 19 . . . . . . 7  |-  ( n  =  M  ->  n  =  M )
97, 8oveq12d 5943 . . . . . 6  |-  ( n  =  M  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M ) )
109oveq1d 5940 . . . . 5  |-  ( n  =  M  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) )
113, 10ifbieq2d 3586 . . . 4  |-  ( n  =  M  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) )
12 oveq1 5932 . . . 4  |-  ( n  =  M  ->  (
n  pCnt  N )  =  ( M  pCnt  N ) )
1311, 12oveq12d 5943 . . 3  |-  ( n  =  M  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) ) ^ ( M 
pCnt  N ) ) )
142, 13ifbieq1d 3584 . 2  |-  ( n  =  M  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 ) ) ^
( M  pCnt  N
) ) ,  1 ) )
15 simp3 1001 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  M  e.  NN )
16 0zd 9357 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
0  e.  ZZ )
17 1zzd 9372 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
1  e.  ZZ )
18 neg1z 9377 . . . . . . . 8  |-  -u 1  e.  ZZ
1918a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  -u 1  e.  ZZ )
20 id 19 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
21 8nn 9177 . . . . . . . . . . . . . . 15  |-  8  e.  NN
2221a1i 9 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  8  e.  NN )
2320, 22zmodcld 10456 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
2423nn0zd 9465 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
25 1zzd 9372 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
26 zdceq 9420 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
2724, 25, 26syl2anc 411 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
28 7nn 9176 . . . . . . . . . . . . 13  |-  7  e.  NN
2928nnzi 9366 . . . . . . . . . . . 12  |-  7  e.  ZZ
30 zdceq 9420 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
3124, 29, 30sylancl 413 . . . . . . . . . . 11  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
32 dcor 937 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3327, 31, 32sylc 62 . . . . . . . . . 10  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
34 elprg 3643 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3523, 34syl 14 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3635dcbid 839 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
3733, 36mpbird 167 . . . . . . . . 9  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
38373ad2ant1 1020 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
4017, 19, 39ifcldcd 3598 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
41 2nn 9171 . . . . . . . 8  |-  2  e.  NN
4241a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> 
2  e.  NN )
43 simpll1 1038 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  A  e.  ZZ )
44 dvdsdc 11982 . . . . . . 7  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
4542, 43, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  -> DECID  2  ||  A )
4616, 40, 45ifcldcd 3598 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  M  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
47 simpll1 1038 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  A  e.  ZZ )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  M  = 
2 )
49 prm2orodd 12321 . . . . . . . . . . . . . 14  |-  ( M  e.  Prime  ->  ( M  =  2  \/  -.  2  ||  M ) )
5049orcomd 730 . . . . . . . . . . . . 13  |-  ( M  e.  Prime  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5150ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  \/  M  =  2 ) )
5248, 51ecased 1360 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  -.  2  ||  M )
5315ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN )
5453nnnn0d 9321 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  M  e.  NN0 )
55 nn0oddm1d2 12093 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  /  2 )  e. 
NN0 ) )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( -.  2  ||  M  <->  ( ( M  -  1 )  / 
2 )  e.  NN0 ) )
5752, 56mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( M  -  1 )  / 
2 )  e.  NN0 )
58 zexpcl 10665 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( M  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( M  -  1 )  /  2 ) )  e.  ZZ )
5947, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( A ^
( ( M  - 
1 )  /  2
) )  e.  ZZ )
6059peano2zd 9470 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
6160, 53zmodcld 10456 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  NN0 )
6261nn0zd 9465 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  e.  ZZ )
63 1zzd 9372 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  1  e.  ZZ )
6462, 63zsubcld 9472 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  /\  -.  M  =  2 )  ->  ( ( ( ( A ^ (
( M  -  1 )  /  2 ) )  +  1 )  mod  M )  - 
1 )  e.  ZZ )
65 simpl3 1004 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  NN )
6665nnzd 9466 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  ZZ )
67 2z 9373 . . . . . 6  |-  2  e.  ZZ
68 zdceq 9420 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  -> DECID  M  =  2 )
6966, 67, 68sylancl 413 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  -> DECID 
M  =  2 )
7046, 64, 69ifcldadc 3591 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) )  e.  ZZ )
71 simpr 110 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  M  e.  Prime )
72 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  N  e.  NN )
7371, 72pccld 12496 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( M  pCnt  N )  e.  NN0 )
74 zexpcl 10665 . . . 4  |-  ( ( if ( M  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  / 
2 ) )  +  1 )  mod  M
)  -  1 ) )  e.  ZZ  /\  ( M  pCnt  N )  e.  NN0 )  -> 
( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
7570, 73, 74syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  M  e.  Prime )  ->  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) )  e.  ZZ )
76 1zzd 9372 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  /\  -.  M  e.  Prime )  ->  1  e.  ZZ )
77 prmdc 12325 . . . 4  |-  ( M  e.  NN  -> DECID  M  e.  Prime )
7815, 77syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  -> DECID  M  e.  Prime )
7975, 76, 78ifcldadc 3591 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 )  e.  ZZ )
801, 14, 15, 79fvmptd3 5658 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e. 
Prime ,  ( if ( M  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( M  -  1 )  /  2 ) )  +  1 )  mod 
M )  -  1 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   ifcif 3562   {cpr 3624   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   0cc0 7898   1c1 7899    + caddc 7901    - cmin 8216   -ucneg 8217    / cdiv 8718   NNcn 9009   2c2 9060   7c7 9065   8c8 9066   NN0cn0 9268   ZZcz 9345    mod cmo 10433   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by:  lgsval2lem  15359
  Copyright terms: Public domain W3C validator