ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv Unicode version

Theorem eufnfv 5793
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1  |-  A  e. 
_V
eufnfv.2  |-  B  e. 
_V
Assertion
Ref Expression
eufnfv  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Distinct variable groups:    x, f, A    B, f
Allowed substitution hint:    B( x)

Proof of Theorem eufnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5  |-  A  e. 
_V
21mptex 5788 . . . 4  |-  ( x  e.  A  |->  B )  e.  _V
3 eqeq2 2206 . . . . . 6  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( f  =  y  <-> 
f  =  ( x  e.  A  |->  B ) ) )
43bibi2d 232 . . . . 5  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
54albidv 1838 . . . 4  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y )  <->  A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
62, 5spcev 2859 . . 3  |-  ( A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )  ->  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y ) )
7 eufnfv.2 . . . . . . 7  |-  B  e. 
_V
8 eqid 2196 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
97, 8fnmpti 5386 . . . . . 6  |-  ( x  e.  A  |->  B )  Fn  A
10 fneq1 5346 . . . . . 6  |-  ( f  =  ( x  e.  A  |->  B )  -> 
( f  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
119, 10mpbiri 168 . . . . 5  |-  ( f  =  ( x  e.  A  |->  B )  -> 
f  Fn  A )
1211pm4.71ri 392 . . . 4  |-  ( f  =  ( x  e.  A  |->  B )  <->  ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) ) )
13 dffn5im 5606 . . . . . . 7  |-  ( f  Fn  A  ->  f  =  ( x  e.  A  |->  ( f `  x ) ) )
1413eqeq1d 2205 . . . . . 6  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <-> 
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B ) ) )
15 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  f  /\  x  e.  dom  f )  -> 
( f `  x
)  e.  _V )
1615funfni 5358 . . . . . . . 8  |-  ( ( f  Fn  A  /\  x  e.  A )  ->  ( f `  x
)  e.  _V )
1716ralrimiva 2570 . . . . . . 7  |-  ( f  Fn  A  ->  A. x  e.  A  ( f `  x )  e.  _V )
18 mpteqb 5652 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
1917, 18syl 14 . . . . . 6  |-  ( f  Fn  A  ->  (
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2014, 19bitrd 188 . . . . 5  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2120pm5.32i 454 . . . 4  |-  ( ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B ) )
2212, 21bitr2i 185 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )
236, 22mpg 1465 . 2  |-  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )
24 df-eu 2048 . 2  |-  ( E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  E. y A. f
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  y ) )
2523, 24mpbir 146 1  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   A.wral 2475   _Vcvv 2763    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator