Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eufnfv | Unicode version |
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.) |
Ref | Expression |
---|---|
eufnfv.1 | |
eufnfv.2 |
Ref | Expression |
---|---|
eufnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufnfv.1 | . . . . 5 | |
2 | 1 | mptex 5711 | . . . 4 |
3 | eqeq2 2175 | . . . . . 6 | |
4 | 3 | bibi2d 231 | . . . . 5 |
5 | 4 | albidv 1812 | . . . 4 |
6 | 2, 5 | spcev 2821 | . . 3 |
7 | eufnfv.2 | . . . . . . 7 | |
8 | eqid 2165 | . . . . . . 7 | |
9 | 7, 8 | fnmpti 5316 | . . . . . 6 |
10 | fneq1 5276 | . . . . . 6 | |
11 | 9, 10 | mpbiri 167 | . . . . 5 |
12 | 11 | pm4.71ri 390 | . . . 4 |
13 | dffn5im 5532 | . . . . . . 7 | |
14 | 13 | eqeq1d 2174 | . . . . . 6 |
15 | funfvex 5503 | . . . . . . . . 9 | |
16 | 15 | funfni 5288 | . . . . . . . 8 |
17 | 16 | ralrimiva 2539 | . . . . . . 7 |
18 | mpteqb 5576 | . . . . . . 7 | |
19 | 17, 18 | syl 14 | . . . . . 6 |
20 | 14, 19 | bitrd 187 | . . . . 5 |
21 | 20 | pm5.32i 450 | . . . 4 |
22 | 12, 21 | bitr2i 184 | . . 3 |
23 | 6, 22 | mpg 1439 | . 2 |
24 | df-eu 2017 | . 2 | |
25 | 23, 24 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 wral 2444 cvv 2726 cmpt 4043 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |