ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv Unicode version

Theorem eufnfv 5790
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1  |-  A  e. 
_V
eufnfv.2  |-  B  e. 
_V
Assertion
Ref Expression
eufnfv  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Distinct variable groups:    x, f, A    B, f
Allowed substitution hint:    B( x)

Proof of Theorem eufnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5  |-  A  e. 
_V
21mptex 5785 . . . 4  |-  ( x  e.  A  |->  B )  e.  _V
3 eqeq2 2203 . . . . . 6  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( f  =  y  <-> 
f  =  ( x  e.  A  |->  B ) ) )
43bibi2d 232 . . . . 5  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
54albidv 1835 . . . 4  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y )  <->  A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
62, 5spcev 2856 . . 3  |-  ( A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )  ->  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y ) )
7 eufnfv.2 . . . . . . 7  |-  B  e. 
_V
8 eqid 2193 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
97, 8fnmpti 5383 . . . . . 6  |-  ( x  e.  A  |->  B )  Fn  A
10 fneq1 5343 . . . . . 6  |-  ( f  =  ( x  e.  A  |->  B )  -> 
( f  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
119, 10mpbiri 168 . . . . 5  |-  ( f  =  ( x  e.  A  |->  B )  -> 
f  Fn  A )
1211pm4.71ri 392 . . . 4  |-  ( f  =  ( x  e.  A  |->  B )  <->  ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) ) )
13 dffn5im 5603 . . . . . . 7  |-  ( f  Fn  A  ->  f  =  ( x  e.  A  |->  ( f `  x ) ) )
1413eqeq1d 2202 . . . . . 6  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <-> 
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B ) ) )
15 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  f  /\  x  e.  dom  f )  -> 
( f `  x
)  e.  _V )
1615funfni 5355 . . . . . . . 8  |-  ( ( f  Fn  A  /\  x  e.  A )  ->  ( f `  x
)  e.  _V )
1716ralrimiva 2567 . . . . . . 7  |-  ( f  Fn  A  ->  A. x  e.  A  ( f `  x )  e.  _V )
18 mpteqb 5649 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
1917, 18syl 14 . . . . . 6  |-  ( f  Fn  A  ->  (
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2014, 19bitrd 188 . . . . 5  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2120pm5.32i 454 . . . 4  |-  ( ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B ) )
2212, 21bitr2i 185 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )
236, 22mpg 1462 . 2  |-  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )
24 df-eu 2045 . 2  |-  ( E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  E. y A. f
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  y ) )
2523, 24mpbir 146 1  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   A.wral 2472   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator