ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eufnfv Unicode version

Theorem eufnfv 5749
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
Hypotheses
Ref Expression
eufnfv.1  |-  A  e. 
_V
eufnfv.2  |-  B  e. 
_V
Assertion
Ref Expression
eufnfv  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Distinct variable groups:    x, f, A    B, f
Allowed substitution hint:    B( x)

Proof of Theorem eufnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eufnfv.1 . . . . 5  |-  A  e. 
_V
21mptex 5744 . . . 4  |-  ( x  e.  A  |->  B )  e.  _V
3 eqeq2 2187 . . . . . 6  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( f  =  y  <-> 
f  =  ( x  e.  A  |->  B ) ) )
43bibi2d 232 . . . . 5  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
54albidv 1824 . . . 4  |-  ( y  =  ( x  e.  A  |->  B )  -> 
( A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y )  <->  A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) ) ) )
62, 5spcev 2834 . . 3  |-  ( A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )  ->  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )  <-> 
f  =  y ) )
7 eufnfv.2 . . . . . . 7  |-  B  e. 
_V
8 eqid 2177 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
97, 8fnmpti 5346 . . . . . 6  |-  ( x  e.  A  |->  B )  Fn  A
10 fneq1 5306 . . . . . 6  |-  ( f  =  ( x  e.  A  |->  B )  -> 
( f  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
119, 10mpbiri 168 . . . . 5  |-  ( f  =  ( x  e.  A  |->  B )  -> 
f  Fn  A )
1211pm4.71ri 392 . . . 4  |-  ( f  =  ( x  e.  A  |->  B )  <->  ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) ) )
13 dffn5im 5563 . . . . . . 7  |-  ( f  Fn  A  ->  f  =  ( x  e.  A  |->  ( f `  x ) ) )
1413eqeq1d 2186 . . . . . 6  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <-> 
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B ) ) )
15 funfvex 5534 . . . . . . . . 9  |-  ( ( Fun  f  /\  x  e.  dom  f )  -> 
( f `  x
)  e.  _V )
1615funfni 5318 . . . . . . . 8  |-  ( ( f  Fn  A  /\  x  e.  A )  ->  ( f `  x
)  e.  _V )
1716ralrimiva 2550 . . . . . . 7  |-  ( f  Fn  A  ->  A. x  e.  A  ( f `  x )  e.  _V )
18 mpteqb 5608 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( f `  x ) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
1917, 18syl 14 . . . . . 6  |-  ( f  Fn  A  ->  (
( x  e.  A  |->  ( f `  x
) )  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2014, 19bitrd 188 . . . . 5  |-  ( f  Fn  A  ->  (
f  =  ( x  e.  A  |->  B )  <->  A. x  e.  A  ( f `  x
)  =  B ) )
2120pm5.32i 454 . . . 4  |-  ( ( f  Fn  A  /\  f  =  ( x  e.  A  |->  B ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B ) )
2212, 21bitr2i 185 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  ( x  e.  A  |->  B ) )
236, 22mpg 1451 . 2  |-  E. y A. f ( ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  =  B )  <->  f  =  y )
24 df-eu 2029 . 2  |-  ( E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  E. y A. f
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  =  B )  <->  f  =  y ) )
2523, 24mpbir 146 1  |-  E! f ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   A.wral 2455   _Vcvv 2739    |-> cmpt 4066    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator