ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt4g Unicode version

Theorem ovmpt4g 6127
Description: Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5718.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
ovmpt4g  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpt4g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elisset 2814 . . 3  |-  ( C  e.  V  ->  E. z 
z  =  C )
2 moeq 2978 . . . . . . 7  |-  E* z 
z  =  C
32a1i 9 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z  z  =  C )
4 ovmpt4g.3 . . . . . . 7  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
5 df-mpo 6006 . . . . . . 7  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
64, 5eqtri 2250 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
73, 6ovidi 6123 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  ( x F y )  =  z ) )
8 eqeq2 2239 . . . . 5  |-  ( z  =  C  ->  (
( x F y )  =  z  <->  ( x F y )  =  C ) )
97, 8mpbidi 151 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  ( x F y )  =  C ) )
109exlimdv 1865 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( E. z  z  =  C  ->  (
x F y )  =  C ) )
111, 10syl5 32 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( C  e.  V  ->  ( x F y )  =  C ) )
12113impia 1224 1  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395   E.wex 1538   E*wmo 2078    e. wcel 2200  (class class class)co 6001   {coprab 6002    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  ovmpos  6128  ov2gf  6129  ovmpodxf  6130  ovmpodf  6136  ofmres  6281  fnmpoovd  6361  mapxpen  7009  cnmpt21  14965  cnmpt2t  14967  cnmptcom  14972
  Copyright terms: Public domain W3C validator