ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff2 Unicode version

Theorem dff2 5703
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
Assertion
Ref Expression
dff2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )

Proof of Theorem dff2
StepHypRef Expression
1 ffn 5404 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fssxp 5422 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
31, 2jca 306 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
4 rnss 4893 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
5 rnxpss 5098 . . . . 5  |-  ran  ( A  X.  B )  C_  B
64, 5sstrdi 3192 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
76anim2i 342 . . 3  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  -> 
( F  Fn  A  /\  ran  F  C_  B
) )
8 df-f 5259 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
97, 8sylibr 134 . 2  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  ->  F : A --> B )
103, 9impbii 126 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    C_ wss 3154    X. cxp 4658   ran crn 4661    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  mapval2  6734  mpomulf  8011  frecuzrdgtclt  10495  imasaddflemg  12902
  Copyright terms: Public domain W3C validator