ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff2 Unicode version

Theorem dff2 5724
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
Assertion
Ref Expression
dff2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )

Proof of Theorem dff2
StepHypRef Expression
1 ffn 5425 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fssxp 5443 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
31, 2jca 306 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
4 rnss 4908 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
5 rnxpss 5114 . . . . 5  |-  ran  ( A  X.  B )  C_  B
64, 5sstrdi 3205 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
76anim2i 342 . . 3  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  -> 
( F  Fn  A  /\  ran  F  C_  B
) )
8 df-f 5275 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
97, 8sylibr 134 . 2  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  ->  F : A --> B )
103, 9impbii 126 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    C_ wss 3166    X. cxp 4673   ran crn 4676    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  mapval2  6765  mpomulf  8062  frecuzrdgtclt  10566  imasaddflemg  13148
  Copyright terms: Public domain W3C validator