ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff2 Unicode version

Theorem dff2 5640
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
Assertion
Ref Expression
dff2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )

Proof of Theorem dff2
StepHypRef Expression
1 ffn 5347 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fssxp 5365 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
31, 2jca 304 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
4 rnss 4841 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
5 rnxpss 5042 . . . . 5  |-  ran  ( A  X.  B )  C_  B
64, 5sstrdi 3159 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
76anim2i 340 . . 3  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  -> 
( F  Fn  A  /\  ran  F  C_  B
) )
8 df-f 5202 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
97, 8sylibr 133 . 2  |-  ( ( F  Fn  A  /\  F  C_  ( A  X.  B ) )  ->  F : A --> B )
103, 9impbii 125 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  F  C_  ( A  X.  B
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    C_ wss 3121    X. cxp 4609   ran crn 4612    Fn wfn 5193   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by:  mapval2  6656  frecuzrdgtclt  10377
  Copyright terms: Public domain W3C validator