ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtclt Unicode version

Theorem frecuzrdgtclt 10356
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtclt.3  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgtclt  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgtclt
StepHypRef Expression
1 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . 5  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . 5  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . 5  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgfun 10355 . . . 4  |-  ( ph  ->  Fun  ran  R )
7 frecuzrdgtclt.3 . . . . 5  |-  ( ph  ->  P  =  ran  R
)
87funeqd 5210 . . . 4  |-  ( ph  ->  ( Fun  P  <->  Fun  ran  R
) )
96, 8mpbird 166 . . 3  |-  ( ph  ->  Fun  P )
107dmeqd 4806 . . . 4  |-  ( ph  ->  dom  P  =  dom  ran 
R )
111, 2, 3, 4, 5frecuzrdgdom 10353 . . . 4  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
1210, 11eqtrd 2198 . . 3  |-  ( ph  ->  dom  P  =  (
ZZ>= `  C ) )
13 df-fn 5191 . . 3  |-  ( P  Fn  ( ZZ>= `  C
)  <->  ( Fun  P  /\  dom  P  =  (
ZZ>= `  C ) ) )
149, 12, 13sylanbrc 414 . 2  |-  ( ph  ->  P  Fn  ( ZZ>= `  C ) )
151, 2, 3, 4, 5frecuzrdgrclt 10350 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 frn 5346 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
1715, 16syl 14 . . 3  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
187, 17eqsstrd 3178 . 2  |-  ( ph  ->  P  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 dff2 5629 . 2  |-  ( P : ( ZZ>= `  C
) --> S  <->  ( P  Fn  ( ZZ>= `  C )  /\  P  C_  ( (
ZZ>= `  C )  X.  S ) ) )
2014, 18, 19sylanbrc 414 1  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   <.cop 3579   omcom 4567    X. cxp 4602   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  freccfrec 6358   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  frecuzrdg0t  10357  frecuzrdgsuctlem  10358  seqf  10396  seqf2  10399
  Copyright terms: Public domain W3C validator