ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtclt Unicode version

Theorem frecuzrdgtclt 10435
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtclt.3  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgtclt  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgtclt
StepHypRef Expression
1 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . 5  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . 5  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . 5  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgfun 10434 . . . 4  |-  ( ph  ->  Fun  ran  R )
7 frecuzrdgtclt.3 . . . . 5  |-  ( ph  ->  P  =  ran  R
)
87funeqd 5250 . . . 4  |-  ( ph  ->  ( Fun  P  <->  Fun  ran  R
) )
96, 8mpbird 167 . . 3  |-  ( ph  ->  Fun  P )
107dmeqd 4841 . . . 4  |-  ( ph  ->  dom  P  =  dom  ran 
R )
111, 2, 3, 4, 5frecuzrdgdom 10432 . . . 4  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
1210, 11eqtrd 2220 . . 3  |-  ( ph  ->  dom  P  =  (
ZZ>= `  C ) )
13 df-fn 5231 . . 3  |-  ( P  Fn  ( ZZ>= `  C
)  <->  ( Fun  P  /\  dom  P  =  (
ZZ>= `  C ) ) )
149, 12, 13sylanbrc 417 . 2  |-  ( ph  ->  P  Fn  ( ZZ>= `  C ) )
151, 2, 3, 4, 5frecuzrdgrclt 10429 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 frn 5386 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
1715, 16syl 14 . . 3  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
187, 17eqsstrd 3203 . 2  |-  ( ph  ->  P  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 dff2 5673 . 2  |-  ( P : ( ZZ>= `  C
) --> S  <->  ( P  Fn  ( ZZ>= `  C )  /\  P  C_  ( (
ZZ>= `  C )  X.  S ) ) )
2014, 18, 19sylanbrc 417 1  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158    C_ wss 3141   <.cop 3607   omcom 4601    X. cxp 4636   dom cdm 4638   ran crn 4639   Fun wfun 5222    Fn wfn 5223   -->wf 5224   ` cfv 5228  (class class class)co 5888    e. cmpo 5890  freccfrec 6405   1c1 7826    + caddc 7828   ZZcz 9267   ZZ>=cuz 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543
This theorem is referenced by:  frecuzrdg0t  10436  frecuzrdgsuctlem  10437  seqf  10475  seqf2  10478
  Copyright terms: Public domain W3C validator