ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtclt Unicode version

Theorem frecuzrdgtclt 9889
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtclt.3  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgtclt  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgtclt
StepHypRef Expression
1 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . 5  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . 5  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . 5  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgfun 9888 . . . 4  |-  ( ph  ->  Fun  ran  R )
7 frecuzrdgtclt.3 . . . . 5  |-  ( ph  ->  P  =  ran  R
)
87funeqd 5050 . . . 4  |-  ( ph  ->  ( Fun  P  <->  Fun  ran  R
) )
96, 8mpbird 166 . . 3  |-  ( ph  ->  Fun  P )
107dmeqd 4651 . . . 4  |-  ( ph  ->  dom  P  =  dom  ran 
R )
111, 2, 3, 4, 5frecuzrdgdom 9886 . . . 4  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
1210, 11eqtrd 2121 . . 3  |-  ( ph  ->  dom  P  =  (
ZZ>= `  C ) )
13 df-fn 5031 . . 3  |-  ( P  Fn  ( ZZ>= `  C
)  <->  ( Fun  P  /\  dom  P  =  (
ZZ>= `  C ) ) )
149, 12, 13sylanbrc 409 . 2  |-  ( ph  ->  P  Fn  ( ZZ>= `  C ) )
151, 2, 3, 4, 5frecuzrdgrclt 9883 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 frn 5182 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
1715, 16syl 14 . . 3  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
187, 17eqsstrd 3061 . 2  |-  ( ph  ->  P  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 dff2 5457 . 2  |-  ( P : ( ZZ>= `  C
) --> S  <->  ( P  Fn  ( ZZ>= `  C )  /\  P  C_  ( (
ZZ>= `  C )  X.  S ) ) )
2014, 18, 19sylanbrc 409 1  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    C_ wss 3000   <.cop 3453   omcom 4418    X. cxp 4450   dom cdm 4452   ran crn 4453   Fun wfun 5022    Fn wfn 5023   -->wf 5024   ` cfv 5028  (class class class)co 5666    |-> cmpt2 5668  freccfrec 6169   1c1 7412    + caddc 7414   ZZcz 8811   ZZ>=cuz 9080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081
This theorem is referenced by:  frecuzrdg0t  9890  frecuzrdgsuctlem  9891  iseqfclt  9940  seqf  9941
  Copyright terms: Public domain W3C validator