![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dff2 | GIF version |
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
Ref | Expression |
---|---|
dff2 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5404 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fssxp 5422 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
4 | rnss 4893 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
5 | rnxpss 5098 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
6 | 4, 5 | sstrdi 3192 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
7 | 6 | anim2i 342 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
8 | df-f 5259 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | sylibr 134 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴⟶𝐵) |
10 | 3, 9 | impbii 126 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ⊆ wss 3154 × cxp 4658 ran crn 4661 Fn wfn 5250 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-fun 5257 df-fn 5258 df-f 5259 |
This theorem is referenced by: mapval2 6734 mpomulf 8011 frecuzrdgtclt 10495 imasaddflemg 12902 |
Copyright terms: Public domain | W3C validator |