Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff2 | GIF version |
Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
Ref | Expression |
---|---|
dff2 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5345 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fssxp 5363 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
4 | rnss 4839 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
5 | rnxpss 5040 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
6 | 4, 5 | sstrdi 3159 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
7 | 6 | anim2i 340 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
8 | df-f 5200 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | sylibr 133 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴⟶𝐵) |
10 | 3, 9 | impbii 125 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ⊆ wss 3121 × cxp 4607 ran crn 4610 Fn wfn 5191 ⟶wf 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 |
This theorem is referenced by: mapval2 6653 frecuzrdgtclt 10366 |
Copyright terms: Public domain | W3C validator |