| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff2 | GIF version | ||
| Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
| Ref | Expression |
|---|---|
| dff2 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5435 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fssxp 5453 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
| 4 | rnss 4917 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
| 5 | rnxpss 5123 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 6 | 4, 5 | sstrdi 3209 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 7 | 6 | anim2i 342 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 8 | df-f 5284 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:𝐴⟶𝐵) |
| 10 | 3, 9 | impbii 126 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ⊆ wss 3170 × cxp 4681 ran crn 4684 Fn wfn 5275 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 |
| This theorem is referenced by: mapval2 6778 mpomulf 8082 frecuzrdgtclt 10588 imasaddflemg 13223 |
| Copyright terms: Public domain | W3C validator |