ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 Unicode version

Theorem mapval2 6737
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1  |-  A  e. 
_V
elmap.2  |-  B  e. 
_V
Assertion
Ref Expression
mapval2  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Distinct variable group:    B, f
Allowed substitution hint:    A( f)

Proof of Theorem mapval2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dff2 5706 . . . 4  |-  ( g : B --> A  <->  ( g  Fn  B  /\  g  C_  ( B  X.  A
) ) )
2 ancom 266 . . . 4  |-  ( ( g  Fn  B  /\  g  C_  ( B  X.  A ) )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
31, 2bitri 184 . . 3  |-  ( g : B --> A  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
4 elmap.1 . . . 4  |-  A  e. 
_V
5 elmap.2 . . . 4  |-  B  e. 
_V
64, 5elmap 6736 . . 3  |-  ( g  e.  ( A  ^m  B )  <->  g : B
--> A )
7 elin 3346 . . . 4  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  e.  ~P ( B  X.  A
)  /\  g  e.  { f  |  f  Fn  B } ) )
8 velpw 3612 . . . . 5  |-  ( g  e.  ~P ( B  X.  A )  <->  g  C_  ( B  X.  A
) )
9 vex 2766 . . . . . 6  |-  g  e. 
_V
10 fneq1 5346 . . . . . 6  |-  ( f  =  g  ->  (
f  Fn  B  <->  g  Fn  B ) )
119, 10elab 2908 . . . . 5  |-  ( g  e.  { f  |  f  Fn  B }  <->  g  Fn  B )
128, 11anbi12i 460 . . . 4  |-  ( ( g  e.  ~P ( B  X.  A )  /\  g  e.  { f  |  f  Fn  B } )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
137, 12bitri 184 . . 3  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  C_  ( B  X.  A )  /\  g  Fn  B )
)
143, 6, 133bitr4i 212 . 2  |-  ( g  e.  ( A  ^m  B )  <->  g  e.  ( ~P ( B  X.  A )  i^i  {
f  |  f  Fn  B } ) )
1514eqriv 2193 1  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ~Pcpw 3605    X. cxp 4661    Fn wfn 5253   -->wf 5254  (class class class)co 5922    ^m cmap 6707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-map 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator