ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 Unicode version

Theorem mapval2 6732
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1  |-  A  e. 
_V
elmap.2  |-  B  e. 
_V
Assertion
Ref Expression
mapval2  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Distinct variable group:    B, f
Allowed substitution hint:    A( f)

Proof of Theorem mapval2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dff2 5702 . . . 4  |-  ( g : B --> A  <->  ( g  Fn  B  /\  g  C_  ( B  X.  A
) ) )
2 ancom 266 . . . 4  |-  ( ( g  Fn  B  /\  g  C_  ( B  X.  A ) )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
31, 2bitri 184 . . 3  |-  ( g : B --> A  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
4 elmap.1 . . . 4  |-  A  e. 
_V
5 elmap.2 . . . 4  |-  B  e. 
_V
64, 5elmap 6731 . . 3  |-  ( g  e.  ( A  ^m  B )  <->  g : B
--> A )
7 elin 3342 . . . 4  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  e.  ~P ( B  X.  A
)  /\  g  e.  { f  |  f  Fn  B } ) )
8 velpw 3608 . . . . 5  |-  ( g  e.  ~P ( B  X.  A )  <->  g  C_  ( B  X.  A
) )
9 vex 2763 . . . . . 6  |-  g  e. 
_V
10 fneq1 5342 . . . . . 6  |-  ( f  =  g  ->  (
f  Fn  B  <->  g  Fn  B ) )
119, 10elab 2904 . . . . 5  |-  ( g  e.  { f  |  f  Fn  B }  <->  g  Fn  B )
128, 11anbi12i 460 . . . 4  |-  ( ( g  e.  ~P ( B  X.  A )  /\  g  e.  { f  |  f  Fn  B } )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
137, 12bitri 184 . . 3  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  C_  ( B  X.  A )  /\  g  Fn  B )
)
143, 6, 133bitr4i 212 . 2  |-  ( g  e.  ( A  ^m  B )  <->  g  e.  ( ~P ( B  X.  A )  i^i  {
f  |  f  Fn  B } ) )
1514eqriv 2190 1  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    i^i cin 3152    C_ wss 3153   ~Pcpw 3601    X. cxp 4657    Fn wfn 5249   -->wf 5250  (class class class)co 5918    ^m cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator