ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval2 Unicode version

Theorem mapval2 6825
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1  |-  A  e. 
_V
elmap.2  |-  B  e. 
_V
Assertion
Ref Expression
mapval2  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Distinct variable group:    B, f
Allowed substitution hint:    A( f)

Proof of Theorem mapval2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dff2 5779 . . . 4  |-  ( g : B --> A  <->  ( g  Fn  B  /\  g  C_  ( B  X.  A
) ) )
2 ancom 266 . . . 4  |-  ( ( g  Fn  B  /\  g  C_  ( B  X.  A ) )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
31, 2bitri 184 . . 3  |-  ( g : B --> A  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
4 elmap.1 . . . 4  |-  A  e. 
_V
5 elmap.2 . . . 4  |-  B  e. 
_V
64, 5elmap 6824 . . 3  |-  ( g  e.  ( A  ^m  B )  <->  g : B
--> A )
7 elin 3387 . . . 4  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  e.  ~P ( B  X.  A
)  /\  g  e.  { f  |  f  Fn  B } ) )
8 velpw 3656 . . . . 5  |-  ( g  e.  ~P ( B  X.  A )  <->  g  C_  ( B  X.  A
) )
9 vex 2802 . . . . . 6  |-  g  e. 
_V
10 fneq1 5409 . . . . . 6  |-  ( f  =  g  ->  (
f  Fn  B  <->  g  Fn  B ) )
119, 10elab 2947 . . . . 5  |-  ( g  e.  { f  |  f  Fn  B }  <->  g  Fn  B )
128, 11anbi12i 460 . . . 4  |-  ( ( g  e.  ~P ( B  X.  A )  /\  g  e.  { f  |  f  Fn  B } )  <->  ( g  C_  ( B  X.  A
)  /\  g  Fn  B ) )
137, 12bitri 184 . . 3  |-  ( g  e.  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )  <-> 
( g  C_  ( B  X.  A )  /\  g  Fn  B )
)
143, 6, 133bitr4i 212 . 2  |-  ( g  e.  ( A  ^m  B )  <->  g  e.  ( ~P ( B  X.  A )  i^i  {
f  |  f  Fn  B } ) )
1514eqriv 2226 1  |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i 
{ f  |  f  Fn  B } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    i^i cin 3196    C_ wss 3197   ~Pcpw 3649    X. cxp 4717    Fn wfn 5313   -->wf 5314  (class class class)co 6001    ^m cmap 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator