ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf Unicode version

Theorem dffn5imf 5636
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1  |-  F/_ x F
Assertion
Ref Expression
dffn5imf  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem dffn5imf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5626 . 2  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
2 dffn5imf.1 . . . 4  |-  F/_ x F
3 nfcv 2348 . . . 4  |-  F/_ x
z
42, 3nffv 5588 . . 3  |-  F/_ x
( F `  z
)
5 nfcv 2348 . . 3  |-  F/_ z
( F `  x
)
6 fveq2 5578 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
74, 5, 6cbvmpt 4140 . 2  |-  ( z  e.  A  |->  ( F `
 z ) )  =  ( x  e.  A  |->  ( F `  x ) )
81, 7eqtrdi 2254 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/_wnfc 2335    |-> cmpt 4106    Fn wfn 5267   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator