ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf Unicode version

Theorem dffn5imf 5551
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1  |-  F/_ x F
Assertion
Ref Expression
dffn5imf  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem dffn5imf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5542 . 2  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
2 dffn5imf.1 . . . 4  |-  F/_ x F
3 nfcv 2312 . . . 4  |-  F/_ x
z
42, 3nffv 5506 . . 3  |-  F/_ x
( F `  z
)
5 nfcv 2312 . . 3  |-  F/_ z
( F `  x
)
6 fveq2 5496 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
74, 5, 6cbvmpt 4084 . 2  |-  ( z  e.  A  |->  ( F `
 z ) )  =  ( x  e.  A  |->  ( F `  x ) )
81, 7eqtrdi 2219 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   F/_wnfc 2299    |-> cmpt 4050    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator