ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf Unicode version

Theorem dffn5imf 5541
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1  |-  F/_ x F
Assertion
Ref Expression
dffn5imf  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem dffn5imf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5532 . 2  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
2 dffn5imf.1 . . . 4  |-  F/_ x F
3 nfcv 2308 . . . 4  |-  F/_ x
z
42, 3nffv 5496 . . 3  |-  F/_ x
( F `  z
)
5 nfcv 2308 . . 3  |-  F/_ z
( F `  x
)
6 fveq2 5486 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
74, 5, 6cbvmpt 4077 . 2  |-  ( z  e.  A  |->  ( F `
 z ) )  =  ( x  e.  A  |->  ( F `  x ) )
81, 7eqtrdi 2215 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   F/_wnfc 2295    |-> cmpt 4043    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator