![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffn5imf | GIF version |
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.) |
Ref | Expression |
---|---|
dffn5imf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dffn5imf | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5603 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
2 | dffn5imf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 5565 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
6 | fveq2 5555 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
7 | 4, 5, 6 | cbvmpt 4125 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
8 | 1, 7 | eqtrdi 2242 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2323 ↦ cmpt 4091 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |