| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5imf | GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5imf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| dffn5imf | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5678 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 2 | dffn5imf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 5636 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 6 | fveq2 5626 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 7 | 4, 5, 6 | cbvmpt 4178 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
| 8 | 1, 7 | eqtrdi 2278 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Ⅎwnfc 2359 ↦ cmpt 4144 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |