ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf GIF version

Theorem dffn5imf 5616
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1 𝑥𝐹
Assertion
Ref Expression
dffn5imf (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dffn5imf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5606 . 2 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
2 dffn5imf.1 . . . 4 𝑥𝐹
3 nfcv 2339 . . . 4 𝑥𝑧
42, 3nffv 5568 . . 3 𝑥(𝐹𝑧)
5 nfcv 2339 . . 3 𝑧(𝐹𝑥)
6 fveq2 5558 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
74, 5, 6cbvmpt 4128 . 2 (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑥𝐴 ↦ (𝐹𝑥))
81, 7eqtrdi 2245 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnfc 2326  cmpt 4094   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator