| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5imf | GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5imf.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| dffn5imf | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5637 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 2 | dffn5imf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 5599 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
| 6 | fveq2 5589 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 7 | 4, 5, 6 | cbvmpt 4147 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
| 8 | 1, 7 | eqtrdi 2255 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnfc 2336 ↦ cmpt 4113 Fn wfn 5275 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |