Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffn5imf | GIF version |
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.) |
Ref | Expression |
---|---|
dffn5imf.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dffn5imf | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5532 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
2 | dffn5imf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 5496 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) | |
6 | fveq2 5486 | . . 3 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
7 | 4, 5, 6 | cbvmpt 4077 | . 2 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) |
8 | 1, 7 | eqtrdi 2215 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Ⅎwnfc 2295 ↦ cmpt 4043 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |