ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniinfv Unicode version

Theorem fniinfv 5660
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniinfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funfvex 5616 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
21funfni 5395 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
32ralrimiva 2581 . . 3  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
4 dfiin2g 3974 . . 3  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  |^|_ x  e.  A  ( F `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) } )
53, 4syl 14 . 2  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) } )
6 fnrnfv 5648 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
76inteqd 3904 . 2  |-  ( F  Fn  A  ->  |^| ran  F  =  |^| { y  |  E. x  e.  A  y  =  ( F `  x ) } )
85, 7eqtr4d 2243 1  |-  ( F  Fn  A  ->  |^|_ x  e.  A  ( F `  x )  =  |^| ran 
F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776   |^|cint 3899   |^|_ciin 3942   ran crn 4694    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iin 3944  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator