ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscld Unicode version

Theorem iscld 14339
Description: The predicate "the class  S is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iscld  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )

Proof of Theorem iscld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21cldval 14335 . . . 4  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
32eleq2d 2266 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  S  e.  { x  e.  ~P X  |  ( X  \  x )  e.  J } ) )
4 difeq2 3275 . . . . 5  |-  ( x  =  S  ->  ( X  \  x )  =  ( X  \  S
) )
54eleq1d 2265 . . . 4  |-  ( x  =  S  ->  (
( X  \  x
)  e.  J  <->  ( X  \  S )  e.  J
) )
65elrab 2920 . . 3  |-  ( S  e.  { x  e. 
~P X  |  ( X  \  x )  e.  J }  <->  ( S  e.  ~P X  /\  ( X  \  S )  e.  J ) )
73, 6bitrdi 196 . 2  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  e.  ~P X  /\  ( X  \  S )  e.  J ) ) )
81topopn 14244 . . . 4  |-  ( J  e.  Top  ->  X  e.  J )
9 elpw2g 4189 . . . 4  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
108, 9syl 14 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1110anbi1d 465 . 2  |-  ( J  e.  Top  ->  (
( S  e.  ~P X  /\  ( X  \  S )  e.  J
)  <->  ( S  C_  X  /\  ( X  \  S )  e.  J
) ) )
127, 11bitrd 188 1  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479    \ cdif 3154    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   ` cfv 5258   Topctop 14233   Clsdccld 14328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-top 14234  df-cld 14331
This theorem is referenced by:  iscld2  14340  cldss  14341  cldopn  14343  topcld  14345  discld  14372
  Copyright terms: Public domain W3C validator