ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prfidisj Unicode version

Theorem prfidisj 7024
Description: A pair is finite if it consists of two unequal sets. For the case where  A  =  B, see snfig 6906. For the cases where one or both is a proper class, see prprc1 3741, prprc2 3742, or prprc 3743. (Contributed by Jim Kingdon, 31-May-2022.)
Assertion
Ref Expression
prfidisj  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )

Proof of Theorem prfidisj
StepHypRef Expression
1 df-pr 3640 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
2 snfig 6906 . . 3  |-  ( A  e.  V  ->  { A }  e.  Fin )
3 snfig 6906 . . 3  |-  ( B  e.  W  ->  { B }  e.  Fin )
4 disjsn2 3696 . . 3  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
5 unfidisj 7019 . . 3  |-  ( ( { A }  e.  Fin  /\  { B }  e.  Fin  /\  ( { A }  i^i  { B } )  =  (/) )  ->  ( { A }  u.  { B } )  e.  Fin )
62, 3, 4, 5syl3an 1292 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A }  u.  { B } )  e.  Fin )
71, 6eqeltrid 2292 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   {cpr 3634   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  prfidceq  7025  tpfidisj  7026  fiprsshashgt1  10962  sumpr  11724
  Copyright terms: Public domain W3C validator