Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djulclALT Unicode version

Theorem djulclALT 15937
Description: Shortening of djulcl 7179 using djucllem 15936. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djulclALT  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )

Proof of Theorem djulclALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4187 . . . . 5  |-  (/)  e.  _V
2 df-inl 7175 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
31, 2djucllem 15936 . . . 4  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
) )
43orcd 735 . . 3  |-  ( C  e.  A  ->  (
( (inl  |`  A ) `
 C )  e.  ( { (/) }  X.  A )  \/  (
(inl  |`  A ) `  C )  e.  ( { 1o }  X.  B ) ) )
5 elun 3322 . . 3  |-  ( ( (inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
)  \/  ( (inl  |`  A ) `  C
)  e.  ( { 1o }  X.  B
) ) )
64, 5sylibr 134 . 2  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) ) )
7 df-dju 7166 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
86, 7eleqtrrdi 2301 1  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    e. wcel 2178    u. cun 3172   (/)c0 3468   {csn 3643    X. cxp 4691    |` cres 4695   ` cfv 5290   1oc1o 6518   ⊔ cdju 7165  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-dju 7166  df-inl 7175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator