Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djulclALT Unicode version

Theorem djulclALT 13682
Description: Shortening of djulcl 7016 using djucllem 13681. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djulclALT  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )

Proof of Theorem djulclALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4109 . . . . 5  |-  (/)  e.  _V
2 df-inl 7012 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
31, 2djucllem 13681 . . . 4  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
) )
43orcd 723 . . 3  |-  ( C  e.  A  ->  (
( (inl  |`  A ) `
 C )  e.  ( { (/) }  X.  A )  \/  (
(inl  |`  A ) `  C )  e.  ( { 1o }  X.  B ) ) )
5 elun 3263 . . 3  |-  ( ( (inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
)  \/  ( (inl  |`  A ) `  C
)  e.  ( { 1o }  X.  B
) ) )
64, 5sylibr 133 . 2  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) ) )
7 df-dju 7003 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
86, 7eleqtrrdi 2260 1  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    e. wcel 2136    u. cun 3114   (/)c0 3409   {csn 3576    X. cxp 4602    |` cres 4606   ` cfv 5188   1oc1o 6377   ⊔ cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-dju 7003  df-inl 7012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator