Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djulclALT Unicode version

Theorem djulclALT 13321
Description: Shortening of djulcl 6981 using djucllem 13320. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djulclALT  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )

Proof of Theorem djulclALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4087 . . . . 5  |-  (/)  e.  _V
2 df-inl 6977 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
31, 2djucllem 13320 . . . 4  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
) )
43orcd 723 . . 3  |-  ( C  e.  A  ->  (
( (inl  |`  A ) `
 C )  e.  ( { (/) }  X.  A )  \/  (
(inl  |`  A ) `  C )  e.  ( { 1o }  X.  B ) ) )
5 elun 3244 . . 3  |-  ( ( (inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( (
(inl  |`  A ) `  C )  e.  ( { (/) }  X.  A
)  \/  ( (inl  |`  A ) `  C
)  e.  ( { 1o }  X.  B
) ) )
64, 5sylibr 133 . 2  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) ) )
7 df-dju 6968 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
86, 7eleqtrrdi 2248 1  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    e. wcel 2125    u. cun 3096   (/)c0 3390   {csn 3556    X. cxp 4577    |` cres 4581   ` cfv 5163   1oc1o 6346   ⊔ cdju 6967  inlcinl 6975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-res 4591  df-iota 5128  df-fun 5165  df-fv 5171  df-dju 6968  df-inl 6977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator