ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl Unicode version

Theorem djulcl 7052
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )

Proof of Theorem djulcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
2 0ex 4132 . . . . 5  |-  (/)  e.  _V
32snid 3625 . . . 4  |-  (/)  e.  { (/)
}
4 opelxpi 4660 . . . 4  |-  ( (
(/)  e.  { (/) }  /\  C  e.  A )  -> 
<. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
53, 4mpan 424 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
6 opeq2 3781 . . . 4  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
7 df-inl 7048 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
86, 7fvmptg 5594 . . 3  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) )  ->  (inl `  C )  =  <. (/)
,  C >. )
91, 5, 8syl2anc 411 . 2  |-  ( C  e.  A  ->  (inl `  C )  =  <. (/)
,  C >. )
10 elun1 3304 . . . 4  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
115, 10syl 14 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
12 df-dju 7039 . . 3  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1311, 12eleqtrrdi 2271 . 2  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( A B ) )
149, 13eqeltrd 2254 1  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597    X. cxp 4626   ` cfv 5218   1oc1o 6412   ⊔ cdju 7038  inlcinl 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-dju 7039  df-inl 7048
This theorem is referenced by:  djulclb  7056  updjudhcoinlf  7081  omp1eomlem  7095  difinfsnlem  7100  difinfsn  7101  ctmlemr  7109  ctm  7110  ctssdclemn0  7111  ctssdccl  7112  fodju0  7147  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  subctctexmid  14835
  Copyright terms: Public domain W3C validator