Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djulcl | Unicode version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | inl ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | 0ex 4109 | . . . . 5 | |
3 | 2 | snid 3607 | . . . 4 |
4 | opelxpi 4636 | . . . 4 | |
5 | 3, 4 | mpan 421 | . . 3 |
6 | opeq2 3759 | . . . 4 | |
7 | df-inl 7012 | . . . 4 inl | |
8 | 6, 7 | fvmptg 5562 | . . 3 inl |
9 | 1, 5, 8 | syl2anc 409 | . 2 inl |
10 | elun1 3289 | . . . 4 | |
11 | 5, 10 | syl 14 | . . 3 |
12 | df-dju 7003 | . . 3 ⊔ | |
13 | 11, 12 | eleqtrrdi 2260 | . 2 ⊔ |
14 | 9, 13 | eqeltrd 2243 | 1 inl ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2726 cun 3114 c0 3409 csn 3576 cop 3579 cxp 4602 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-dju 7003 df-inl 7012 |
This theorem is referenced by: djulclb 7020 updjudhcoinlf 7045 omp1eomlem 7059 difinfsnlem 7064 difinfsn 7065 ctmlemr 7073 ctm 7074 ctssdclemn0 7075 ctssdccl 7076 fodju0 7111 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |