Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djulcl | Unicode version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | inl ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 | |
2 | 0ex 4116 | . . . . 5 | |
3 | 2 | snid 3614 | . . . 4 |
4 | opelxpi 4643 | . . . 4 | |
5 | 3, 4 | mpan 422 | . . 3 |
6 | opeq2 3766 | . . . 4 | |
7 | df-inl 7024 | . . . 4 inl | |
8 | 6, 7 | fvmptg 5572 | . . 3 inl |
9 | 1, 5, 8 | syl2anc 409 | . 2 inl |
10 | elun1 3294 | . . . 4 | |
11 | 5, 10 | syl 14 | . . 3 |
12 | df-dju 7015 | . . 3 ⊔ | |
13 | 11, 12 | eleqtrrdi 2264 | . 2 ⊔ |
14 | 9, 13 | eqeltrd 2247 | 1 inl ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cvv 2730 cun 3119 c0 3414 csn 3583 cop 3586 cxp 4609 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-dju 7015 df-inl 7024 |
This theorem is referenced by: djulclb 7032 updjudhcoinlf 7057 omp1eomlem 7071 difinfsnlem 7076 difinfsn 7077 ctmlemr 7085 ctm 7086 ctssdclemn0 7087 ctssdccl 7088 fodju0 7123 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |