ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl Unicode version

Theorem djulcl 7067
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )

Proof of Theorem djulcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2762 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
2 0ex 4144 . . . . 5  |-  (/)  e.  _V
32snid 3637 . . . 4  |-  (/)  e.  { (/)
}
4 opelxpi 4672 . . . 4  |-  ( (
(/)  e.  { (/) }  /\  C  e.  A )  -> 
<. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
53, 4mpan 424 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
6 opeq2 3793 . . . 4  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
7 df-inl 7063 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
86, 7fvmptg 5607 . . 3  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) )  ->  (inl `  C )  =  <. (/)
,  C >. )
91, 5, 8syl2anc 411 . 2  |-  ( C  e.  A  ->  (inl `  C )  =  <. (/)
,  C >. )
10 elun1 3316 . . . 4  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
115, 10syl 14 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
12 df-dju 7054 . . 3  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1311, 12eleqtrrdi 2282 . 2  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( A B ) )
149, 13eqeltrd 2265 1  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2159   _Vcvv 2751    u. cun 3141   (/)c0 3436   {csn 3606   <.cop 3609    X. cxp 4638   ` cfv 5230   1oc1o 6427   ⊔ cdju 7053  inlcinl 7061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-dju 7054  df-inl 7063
This theorem is referenced by:  djulclb  7071  updjudhcoinlf  7096  omp1eomlem  7110  difinfsnlem  7115  difinfsn  7116  ctmlemr  7124  ctm  7125  ctssdclemn0  7126  ctssdccl  7127  fodju0  7162  exmidfodomrlemr  7218  exmidfodomrlemrALT  7219  subctctexmid  15134
  Copyright terms: Public domain W3C validator