ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl Unicode version

Theorem djulcl 6929
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )

Proof of Theorem djulcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2692 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
2 0ex 4050 . . . . 5  |-  (/)  e.  _V
32snid 3551 . . . 4  |-  (/)  e.  { (/)
}
4 opelxpi 4566 . . . 4  |-  ( (
(/)  e.  { (/) }  /\  C  e.  A )  -> 
<. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
53, 4mpan 420 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
6 opeq2 3701 . . . 4  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
7 df-inl 6925 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
86, 7fvmptg 5490 . . 3  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) )  ->  (inl `  C )  =  <. (/)
,  C >. )
91, 5, 8syl2anc 408 . 2  |-  ( C  e.  A  ->  (inl `  C )  =  <. (/)
,  C >. )
10 elun1 3238 . . . 4  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
115, 10syl 14 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
12 df-dju 6916 . . 3  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1311, 12eleqtrrdi 2231 . 2  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( A B ) )
149, 13eqeltrd 2214 1  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2681    u. cun 3064   (/)c0 3358   {csn 3522   <.cop 3525    X. cxp 4532   ` cfv 5118   1oc1o 6299   ⊔ cdju 6915  inlcinl 6923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-dju 6916  df-inl 6925
This theorem is referenced by:  djulclb  6933  updjudhcoinlf  6958  omp1eomlem  6972  difinfsnlem  6977  difinfsn  6978  ctmlemr  6986  ctm  6987  ctssdclemn0  6988  ctssdccl  6989  fodju0  7012  exmidfodomrlemr  7051  exmidfodomrlemrALT  7052  subctctexmid  13185
  Copyright terms: Public domain W3C validator