Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem Unicode version

Theorem djucllem 15740
Description: Lemma for djulcl 7153 and djurcl 7154. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1  |-  X  e. 
_V
djucllem.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djucllem  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Distinct variable groups:    x, A    x, X
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5600 . . 3  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
2 elex 2783 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
3 djucllem.1 . . . . . 6  |-  X  e. 
_V
43snid 3664 . . . . 5  |-  X  e. 
{ X }
5 opelxpi 4707 . . . . 5  |-  ( ( X  e.  { X }  /\  A  e.  B
)  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( A  e.  B  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
7 opeq2 3820 . . . . 5  |-  ( x  =  A  ->  <. X ,  x >.  =  <. X ,  A >. )
8 djucllem.2 . . . . 5  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
97, 8fvmptg 5655 . . . 4  |-  ( ( A  e.  _V  /\  <. X ,  A >.  e.  ( { X }  X.  B ) )  -> 
( F `  A
)  =  <. X ,  A >. )
102, 6, 9syl2anc 411 . . 3  |-  ( A  e.  B  ->  ( F `  A )  =  <. X ,  A >. )
111, 10eqtrd 2238 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  = 
<. X ,  A >. )
1211, 6eqeltrd 2282 1  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   <.cop 3636    |-> cmpt 4105    X. cxp 4673    |` cres 4677   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  djulclALT  15741  djurclALT  15742
  Copyright terms: Public domain W3C validator