Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem Unicode version

Theorem djucllem 15446
Description: Lemma for djulcl 7117 and djurcl 7118. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1  |-  X  e. 
_V
djucllem.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djucllem  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Distinct variable groups:    x, A    x, X
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5582 . . 3  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
2 elex 2774 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
3 djucllem.1 . . . . . 6  |-  X  e. 
_V
43snid 3653 . . . . 5  |-  X  e. 
{ X }
5 opelxpi 4695 . . . . 5  |-  ( ( X  e.  { X }  /\  A  e.  B
)  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( A  e.  B  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
7 opeq2 3809 . . . . 5  |-  ( x  =  A  ->  <. X ,  x >.  =  <. X ,  A >. )
8 djucllem.2 . . . . 5  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
97, 8fvmptg 5637 . . . 4  |-  ( ( A  e.  _V  /\  <. X ,  A >.  e.  ( { X }  X.  B ) )  -> 
( F `  A
)  =  <. X ,  A >. )
102, 6, 9syl2anc 411 . . 3  |-  ( A  e.  B  ->  ( F `  A )  =  <. X ,  A >. )
111, 10eqtrd 2229 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  = 
<. X ,  A >. )
1211, 6eqeltrd 2273 1  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625    |-> cmpt 4094    X. cxp 4661    |` cres 4665   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  djulclALT  15447  djurclALT  15448
  Copyright terms: Public domain W3C validator