Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem Unicode version

Theorem djucllem 14692
Description: Lemma for djulcl 7053 and djurcl 7054. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1  |-  X  e. 
_V
djucllem.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djucllem  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Distinct variable groups:    x, A    x, X
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5541 . . 3  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
2 elex 2750 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
3 djucllem.1 . . . . . 6  |-  X  e. 
_V
43snid 3625 . . . . 5  |-  X  e. 
{ X }
5 opelxpi 4660 . . . . 5  |-  ( ( X  e.  { X }  /\  A  e.  B
)  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( A  e.  B  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
7 opeq2 3781 . . . . 5  |-  ( x  =  A  ->  <. X ,  x >.  =  <. X ,  A >. )
8 djucllem.2 . . . . 5  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
97, 8fvmptg 5595 . . . 4  |-  ( ( A  e.  _V  /\  <. X ,  A >.  e.  ( { X }  X.  B ) )  -> 
( F `  A
)  =  <. X ,  A >. )
102, 6, 9syl2anc 411 . . 3  |-  ( A  e.  B  ->  ( F `  A )  =  <. X ,  A >. )
111, 10eqtrd 2210 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  = 
<. X ,  A >. )
1211, 6eqeltrd 2254 1  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   <.cop 3597    |-> cmpt 4066    X. cxp 4626    |` cres 4630   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by:  djulclALT  14693  djurclALT  14694
  Copyright terms: Public domain W3C validator