Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem Unicode version

Theorem djucllem 13835
Description: Lemma for djulcl 7028 and djurcl 7029. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1  |-  X  e. 
_V
djucllem.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djucllem  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Distinct variable groups:    x, A    x, X
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5520 . . 3  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
2 elex 2741 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
3 djucllem.1 . . . . . 6  |-  X  e. 
_V
43snid 3614 . . . . 5  |-  X  e. 
{ X }
5 opelxpi 4643 . . . . 5  |-  ( ( X  e.  { X }  /\  A  e.  B
)  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
64, 5mpan 422 . . . 4  |-  ( A  e.  B  ->  <. X ,  A >.  e.  ( { X }  X.  B
) )
7 opeq2 3766 . . . . 5  |-  ( x  =  A  ->  <. X ,  x >.  =  <. X ,  A >. )
8 djucllem.2 . . . . 5  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
97, 8fvmptg 5572 . . . 4  |-  ( ( A  e.  _V  /\  <. X ,  A >.  e.  ( { X }  X.  B ) )  -> 
( F `  A
)  =  <. X ,  A >. )
102, 6, 9syl2anc 409 . . 3  |-  ( A  e.  B  ->  ( F `  A )  =  <. X ,  A >. )
111, 10eqtrd 2203 . 2  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  = 
<. X ,  A >. )
1211, 6eqeltrd 2247 1  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  e.  ( { X }  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586    |-> cmpt 4050    X. cxp 4609    |` cres 4613   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  djulclALT  13836  djurclALT  13837
  Copyright terms: Public domain W3C validator