ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprabss Unicode version

Theorem dmoprabss 5933
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 5932 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 19.42v 1899 . . . 4  |-  ( E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) )
32opabbii 4054 . . 3  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) }
4 opabssxp 4683 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  E. z ph ) }  C_  ( A  X.  B )
53, 4eqsstri 3179 . 2  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
61, 5eqsstri 3179 1  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1485    e. wcel 2141    C_ wss 3121   {copab 4047    X. cxp 4607   dom cdm 4609   {coprab 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-dm 4619  df-oprab 5855
This theorem is referenced by:  elmpocl  6045  oprabexd  6104  oprabex  6105  axaddf  7823  axmulf  7824
  Copyright terms: Public domain W3C validator