ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprabss Unicode version

Theorem dmoprabss 5924
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 5923 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 19.42v 1894 . . . 4  |-  ( E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) )
32opabbii 4049 . . 3  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  E. z ph ) }
4 opabssxp 4678 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  E. z ph ) }  C_  ( A  X.  B )
53, 4eqsstri 3174 . 2  |-  { <. x ,  y >.  |  E. z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
61, 5eqsstri 3174 1  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1480    e. wcel 2136    C_ wss 3116   {copab 4042    X. cxp 4602   dom cdm 4604   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614  df-oprab 5846
This theorem is referenced by:  elmpocl  6036  oprabexd  6095  oprabex  6096  axaddf  7809  axmulf  7810
  Copyright terms: Public domain W3C validator