ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabex Unicode version

Theorem oprabex 6182
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex.1  |-  A  e. 
_V
oprabex.2  |-  B  e. 
_V
oprabex.3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
oprabex.4  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
Assertion
Ref Expression
oprabex  |-  F  e. 
_V
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem oprabex
StepHypRef Expression
1 oprabex.4 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 oprabex.3 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
3 moanimv 2117 . . . . 5  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph ) )
42, 3mpbir 146 . . . 4  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  ph )
54funoprab 6019 . . 3  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
6 oprabex.1 . . . . 5  |-  A  e. 
_V
7 oprabex.2 . . . . 5  |-  B  e. 
_V
86, 7xpex 4775 . . . 4  |-  ( A  X.  B )  e. 
_V
9 dmoprabss 6001 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
108, 9ssexi 4168 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V
11 funex 5782 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )
125, 10, 11mp2an 426 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  e.  _V
131, 12eqeltri 2266 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E*wmo 2043    e. wcel 2164   _Vcvv 2760    X. cxp 4658   dom cdm 4660   Fun wfun 5249   {coprab 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5923
This theorem is referenced by:  oprabex3  6183
  Copyright terms: Public domain W3C validator