ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabex Unicode version

Theorem oprabex 6026
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex.1  |-  A  e. 
_V
oprabex.2  |-  B  e. 
_V
oprabex.3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
oprabex.4  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
Assertion
Ref Expression
oprabex  |-  F  e. 
_V
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem oprabex
StepHypRef Expression
1 oprabex.4 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 oprabex.3 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
3 moanimv 2074 . . . . 5  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph ) )
42, 3mpbir 145 . . . 4  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  ph )
54funoprab 5871 . . 3  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
6 oprabex.1 . . . . 5  |-  A  e. 
_V
7 oprabex.2 . . . . 5  |-  B  e. 
_V
86, 7xpex 4654 . . . 4  |-  ( A  X.  B )  e. 
_V
9 dmoprabss 5853 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
108, 9ssexi 4066 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V
11 funex 5643 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )
125, 10, 11mp2an 422 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  e.  _V
131, 12eqeltri 2212 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E*wmo 2000   _Vcvv 2686    X. cxp 4537   dom cdm 4539   Fun wfun 5117   {coprab 5775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-oprab 5778
This theorem is referenced by:  oprabex3  6027
  Copyright terms: Public domain W3C validator