ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabex Unicode version

Theorem oprabex 6143
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex.1  |-  A  e. 
_V
oprabex.2  |-  B  e. 
_V
oprabex.3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
oprabex.4  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
Assertion
Ref Expression
oprabex  |-  F  e. 
_V
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem oprabex
StepHypRef Expression
1 oprabex.4 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
2 oprabex.3 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )
3 moanimv 2111 . . . . 5  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph ) )
42, 3mpbir 146 . . . 4  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  ph )
54funoprab 5988 . . 3  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
6 oprabex.1 . . . . 5  |-  A  e. 
_V
7 oprabex.2 . . . . 5  |-  B  e. 
_V
86, 7xpex 4753 . . . 4  |-  ( A  X.  B )  e. 
_V
9 dmoprabss 5970 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
108, 9ssexi 4153 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V
11 funex 5752 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  e.  _V )
125, 10, 11mp2an 426 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  e.  _V
131, 12eqeltri 2260 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   E*wmo 2037    e. wcel 2158   _Vcvv 2749    X. cxp 4636   dom cdm 4638   Fun wfun 5222   {coprab 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-oprab 5892
This theorem is referenced by:  oprabex3  6144
  Copyright terms: Public domain W3C validator