![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmoprabss | GIF version |
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
dmoprabss | ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmoprab 5743 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} | |
2 | 19.42v 1835 | . . . 4 ⊢ (∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)) | |
3 | 2 | opabbii 3911 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)} |
4 | opabssxp 4525 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)} ⊆ (𝐴 × 𝐵) | |
5 | 3, 4 | eqsstri 3057 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
6 | 1, 5 | eqsstri 3057 | 1 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∃wex 1427 ∈ wcel 1439 ⊆ wss 3000 {copab 3904 × cxp 4449 dom cdm 4451 {coprab 5667 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-xp 4457 df-dm 4461 df-oprab 5670 |
This theorem is referenced by: elmpt2cl 5856 oprabexd 5912 oprabex 5913 |
Copyright terms: Public domain | W3C validator |