ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprabss GIF version

Theorem dmoprabss 6077
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 6076 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 19.42v 1953 . . . 4 (∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑))
32opabbii 4150 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)}
4 opabssxp 4790 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)} ⊆ (𝐴 × 𝐵)
53, 4eqsstri 3256 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
61, 5eqsstri 3256 1 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1538  wcel 2200  wss 3197  {copab 4143   × cxp 4714  dom cdm 4716  {coprab 5995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-dm 4726  df-oprab 5998
This theorem is referenced by:  elmpocl  6191  oprabexd  6262  oprabex  6263  axaddf  8043  axmulf  8044
  Copyright terms: Public domain W3C validator