ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabexd Unicode version

Theorem oprabexd 6033
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1  |-  ( ph  ->  A  e.  _V )
oprabexd.2  |-  ( ph  ->  B  e.  _V )
oprabexd.3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
oprabexd.4  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
Assertion
Ref Expression
oprabexd  |-  ( ph  ->  F  e.  _V )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, x, y, z
Allowed substitution hints:    ps( x, y, z)    F( x, y, z)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
2 oprabexd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
32ex 114 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
4 moanimv 2075 . . . . . 6  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
53, 4sylibr 133 . . . . 5  |-  ( ph  ->  E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
65alrimivv 1848 . . . 4  |-  ( ph  ->  A. x A. y E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
7 funoprabg 5878 . . . 4  |-  ( A. x A. y E* z
( ( x  e.  A  /\  y  e.  B )  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
86, 7syl 14 . . 3  |-  ( ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
9 dmoprabss 5861 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B )
10 oprabexd.1 . . . . 5  |-  ( ph  ->  A  e.  _V )
11 oprabexd.2 . . . . 5  |-  ( ph  ->  B  e.  _V )
12 xpexg 4661 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  X.  B
)  e.  _V )
1310, 11, 12syl2anc 409 . . . 4  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
14 ssexg 4075 . . . 4  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B
)  /\  ( A  X.  B )  e.  _V )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
159, 13, 14sylancr 411 . . 3  |-  ( ph  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
16 funex 5651 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
178, 15, 16syl2anc 409 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
181, 17eqeltrd 2217 1  |-  ( ph  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332    e. wcel 1481   E*wmo 2001   _Vcvv 2689    C_ wss 3076    X. cxp 4545   dom cdm 4547   Fun wfun 5125   {coprab 5783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-oprab 5786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator