ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabexd Unicode version

Theorem oprabexd 6072
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1  |-  ( ph  ->  A  e.  _V )
oprabexd.2  |-  ( ph  ->  B  e.  _V )
oprabexd.3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
oprabexd.4  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
Assertion
Ref Expression
oprabexd  |-  ( ph  ->  F  e.  _V )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, x, y, z
Allowed substitution hints:    ps( x, y, z)    F( x, y, z)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
2 oprabexd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
32ex 114 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
4 moanimv 2081 . . . . . 6  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
53, 4sylibr 133 . . . . 5  |-  ( ph  ->  E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
65alrimivv 1855 . . . 4  |-  ( ph  ->  A. x A. y E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
7 funoprabg 5917 . . . 4  |-  ( A. x A. y E* z
( ( x  e.  A  /\  y  e.  B )  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
86, 7syl 14 . . 3  |-  ( ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
9 dmoprabss 5900 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B )
10 oprabexd.1 . . . . 5  |-  ( ph  ->  A  e.  _V )
11 oprabexd.2 . . . . 5  |-  ( ph  ->  B  e.  _V )
12 xpexg 4699 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  X.  B
)  e.  _V )
1310, 11, 12syl2anc 409 . . . 4  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
14 ssexg 4103 . . . 4  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B
)  /\  ( A  X.  B )  e.  _V )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
159, 13, 14sylancr 411 . . 3  |-  ( ph  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
16 funex 5689 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
178, 15, 16syl2anc 409 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
181, 17eqeltrd 2234 1  |-  ( ph  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1333    = wceq 1335   E*wmo 2007    e. wcel 2128   _Vcvv 2712    C_ wss 3102    X. cxp 4583   dom cdm 4585   Fun wfun 5163   {coprab 5822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-oprab 5825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator