ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabexd Unicode version

Theorem oprabexd 6272
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1  |-  ( ph  ->  A  e.  _V )
oprabexd.2  |-  ( ph  ->  B  e.  _V )
oprabexd.3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
oprabexd.4  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
Assertion
Ref Expression
oprabexd  |-  ( ph  ->  F  e.  _V )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, x, y, z
Allowed substitution hints:    ps( x, y, z)    F( x, y, z)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
2 oprabexd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
32ex 115 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
4 moanimv 2153 . . . . . 6  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
53, 4sylibr 134 . . . . 5  |-  ( ph  ->  E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
65alrimivv 1921 . . . 4  |-  ( ph  ->  A. x A. y E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
7 funoprabg 6103 . . . 4  |-  ( A. x A. y E* z
( ( x  e.  A  /\  y  e.  B )  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
86, 7syl 14 . . 3  |-  ( ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
9 dmoprabss 6086 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B )
10 oprabexd.1 . . . . 5  |-  ( ph  ->  A  e.  _V )
11 oprabexd.2 . . . . 5  |-  ( ph  ->  B  e.  _V )
12 xpexg 4833 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  X.  B
)  e.  _V )
1310, 11, 12syl2anc 411 . . . 4  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
14 ssexg 4223 . . . 4  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B
)  /\  ( A  X.  B )  e.  _V )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
159, 13, 14sylancr 414 . . 3  |-  ( ph  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
16 funex 5862 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
178, 15, 16syl2anc 411 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
181, 17eqeltrd 2306 1  |-  ( ph  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   E*wmo 2078    e. wcel 2200   _Vcvv 2799    C_ wss 3197    X. cxp 4717   dom cdm 4719   Fun wfun 5312   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-oprab 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator