ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnm GIF version

Theorem dmsnm 5069
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmsnm (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmsnm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elvv 4666 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2729 . . . . 5 𝑥 ∈ V
32eldm 4801 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
4 df-br 3983 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
5 vex 2729 . . . . . . . 8 𝑦 ∈ V
62, 5opex 4207 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
76elsn 3592 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
8 eqcom 2167 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
94, 7, 83bitri 205 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
109exbii 1593 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
113, 10bitr2i 184 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
1211exbii 1593 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
131, 12bitri 183 1 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  {csn 3576  cop 3579   class class class wbr 3982   × cxp 4602  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614
This theorem is referenced by:  rnsnm  5070  dmsn0  5071  dmsn0el  5073  relsn2m  5074
  Copyright terms: Public domain W3C validator