![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnm | GIF version |
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
Ref | Expression |
---|---|
dmsnm | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4690 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm 4826 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
4 | df-br 4006 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴}) | |
5 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 2, 5 | opex 4231 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ V |
7 | 6 | elsn 3610 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴) |
8 | eqcom 2179 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 ↔ 𝐴 = ⟨𝑥, 𝑦⟩) | |
9 | 4, 7, 8 | 3bitri 206 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = ⟨𝑥, 𝑦⟩) |
10 | 9 | exbii 1605 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
11 | 3, 10 | bitr2i 185 | . . 3 ⊢ (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴}) |
12 | 11 | exbii 1605 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
13 | 1, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 class class class wbr 4005 × cxp 4626 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-dm 4638 |
This theorem is referenced by: rnsnm 5097 dmsn0 5098 dmsn0el 5100 relsn2m 5101 |
Copyright terms: Public domain | W3C validator |