| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnm | GIF version | ||
| Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmsnm | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 4755 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2779 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm 4894 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
| 4 | df-br 4060 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
| 5 | vex 2779 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 2, 5 | opex 4291 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 7 | 6 | elsn 3659 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
| 8 | eqcom 2209 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
| 9 | 4, 7, 8 | 3bitri 206 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
| 10 | 9 | exbii 1629 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| 11 | 3, 10 | bitr2i 185 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
| 12 | 11 | exbii 1629 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 13 | 1, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 {csn 3643 〈cop 3646 class class class wbr 4059 × cxp 4691 dom cdm 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-dm 4703 |
| This theorem is referenced by: rnsnm 5168 dmsn0 5169 dmsn0el 5171 relsn2m 5172 |
| Copyright terms: Public domain | W3C validator |