ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnm GIF version

Theorem dmsnm 5193
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmsnm (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmsnm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elvv 4780 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2802 . . . . 5 𝑥 ∈ V
32eldm 4919 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
4 df-br 4083 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
5 vex 2802 . . . . . . . 8 𝑦 ∈ V
62, 5opex 4314 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
76elsn 3682 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
8 eqcom 2231 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
94, 7, 83bitri 206 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
109exbii 1651 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
113, 10bitr2i 185 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
1211exbii 1651 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
131, 12bitri 184 1 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  {csn 3666  cop 3669   class class class wbr 4082   × cxp 4716  dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-dm 4728
This theorem is referenced by:  rnsnm  5194  dmsn0  5195  dmsn0el  5197  relsn2m  5198
  Copyright terms: Public domain W3C validator