![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnm | GIF version |
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
Ref | Expression |
---|---|
dmsnm | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4706 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 2755 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm 4842 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
4 | df-br 4019 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
5 | vex 2755 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 2, 5 | opex 4247 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V |
7 | 6 | elsn 3623 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
8 | eqcom 2191 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
9 | 4, 7, 8 | 3bitri 206 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
10 | 9 | exbii 1616 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
11 | 3, 10 | bitr2i 185 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
12 | 11 | exbii 1616 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
13 | 1, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 Vcvv 2752 {csn 3607 〈cop 3610 class class class wbr 4018 × cxp 4642 dom cdm 4644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-dm 4654 |
This theorem is referenced by: rnsnm 5113 dmsn0 5114 dmsn0el 5116 relsn2m 5117 |
Copyright terms: Public domain | W3C validator |