| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmsnm | GIF version | ||
| Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| dmsnm | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elvv 4725 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm 4863 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) | 
| 4 | df-br 4034 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
| 5 | vex 2766 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 2, 5 | opex 4262 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | 
| 7 | 6 | elsn 3638 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) | 
| 8 | eqcom 2198 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
| 9 | 4, 7, 8 | 3bitri 206 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) | 
| 10 | 9 | exbii 1619 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | 
| 11 | 3, 10 | bitr2i 185 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) | 
| 12 | 11 | exbii 1619 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | 
| 13 | 1, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 {csn 3622 〈cop 3625 class class class wbr 4033 × cxp 4661 dom cdm 4663 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 | 
| This theorem is referenced by: rnsnm 5136 dmsn0 5137 dmsn0el 5139 relsn2m 5140 | 
| Copyright terms: Public domain | W3C validator |